ÕªÒª: ¸ßÄÜÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖÐͨ¹ý×Ôµ÷ÖÆ²»Îȶ¨¼¤·¢Î²²¨µÄÑо¿ÔÚ¹ýÈ¥µÄÊ®ÄêÀïÓÐÁ˳¤×ãµÄ·¢Õ¹, ÔÚÅ·ÖÞºË×ÓÑо¿ÖÐÐÄ(CERN)ÈËÃÇÒѾÔÚÏà¹ØAWAKEʵÑéÖÐÀûÓÃÕâÖÖⲨ¼ÓËÙµç×Ó, ²¢»ñµÃÁË×î¸ßÄÜÁ¿Ô¼2 GeVµÄµç×ÓÊø. Õë¶Ô¸ßÄÜÁ£×Ó¼ÓËÙÓ¦ÓÃÐèÇó, ½ü¼¸ÄêÈËÃÇÓÖ½øÒ»²½Ìá³öÁËÀûÓõç×ÓÊøÖÖ×ÓⲨ¿ØÖÆÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌµÄ·½°¸, ÓÃÓÚÌáÉýⲨµÄÇ¿¶ÈÓëÎȶ¨ÐÔ. ±¾ÎÄÑо¿Á˵ç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨ÏàËٶȵÄÓ°Ïì, ×ÅÖØÌÖÂÛÁ˵¼ÖÂⲨÏàËٶȸıäµÄ¶àÖÖÎïÀí»úÀí¼°µç×ÓÊøËùÆðµ½µÄ×÷ÓÃ. ͨ¹ýÀíÂÛ·ÖÎöºÍ¶þάÁ£×ÓÄ£ÄâÑо¿·¢ÏÖ, µç×ÓÊøµÄÒýÈë¿ÉÒÔÌáÉýÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨µÄÔö³¤ÂʺÍⲨµÄÏàËÙ¶È, ÇÒµç×ÓÊøµÄµçºÉÃܶÈÔ½¸ßÆäЧ¹ûÓúÃ÷ÏÔ. ±¾ÎÄ»¹Ì½ÌÖÁ˵ç×ÓÊøÄÜÁ¿ºÍÖÊ×ÓÊøµÄ×ÝÏòÃܶȷֲ¼¶ÔÏàËٶȱ仯µÄÓ°Ïì.
¹Ø¼ü´Ê: µÈÀë×ÓÌåⲨ¼ÓËÙ /
ÖÊ×ÓÊø×Ôµ÷ÖÆ /
ⲨÏàËÙ¶È /
µç×ÓÊøÖÖ×ÓⲨ English Abstract Theoretical and numerical studies of the phase velocity of wakefields in plasma driven by self-modulated proton beams with electron beam seeding Hua Jin-Yu 1 ,Sheng Zheng-Ming 1,2 1.Key Laboratory for Laser Plasmas of Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2.Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China Fund Project: Project supported by the National Natural Science Foundation of China (Grant No. 11991074) Received Date: 08 December 2020Accepted Date: 22 January 2021Available Online: 26 June 2021Published Online: 05 July 2021 Abstract: Significant progress has been made in the studies of wakefield excitation in plasma by a self-modulated high energy proton beam in the past decade. The electron beams accelerated up to 2 GeV by using such a wakefield were demonstrated in the AWAKE experiment at CERN in 2018. Aiming at the application of high energy particle accelerators, new ideas have been investigated in recent years, such as seeding the proton beam self-modulation with an electron beam in order to enhance the strength and stability of the wakefield or adding a density transition in the plasma distribution to enhance the phase velocity and the strength of the wakefield. Here in this work, we investigate the effects of electron beam seeding on the phase velocity of the wakefield generated by the modulated proton beam in plasma. The physical mechanisms responsible for the phase velocity change and the roles played by the electron beam seeding are discussed. The theoretical analysis and two-dimensional particle-in-cell simulations show that both the growth rate and the phase velocity of the wakefield generated by the modulated proton beam can be enhanced by the electron beam seeding. The higher the charge density of the electron beam, the more significant the enhancement effects. The effects of electron beam energy and proton beam longitudinal profiles on the increase of phase velocity are also studied. It is shown that the evolution of the electron beam distribution has a significant effect on the seeding self-modulation process, and thus affecting the phase velocity. A self-focusing electron seeding beam can increase the phase velocity of the wakefield even to superluminal while an expanding seeding beam can reduce the phase velocity and destroy the stability of the whole process. This work may benefit the proton beam seeding self-modulation acceleration and its applications. Keywords: plasma wakefield acceleration /self-modulation of proton beams /wakefield phase velocity /electron beam seeding È«ÎÄHTML --> --> --> 1.Òý¡¡ÑÔ µÈÀë×ÓÌåⲨ¼ÓËÙ¸ÅÄî[1 ,2 ] ×Ô´ÓÉÏÊÀ¼Í70Äê´úÄ©±»Ìá³öÒÔÀ´ÒѾȡµÃÁ˳¤×ãµÄ·¢Õ¹, Ëüͨ¹ý¸ßÇ¿¶ÈµÄ¼¤¹âÂö³å»òÕ߸ßÄÜ´øµçÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖм¤·¢³öÒ»¸ö´óÕñ·ùÇÒ¾ßÓÐÏà¶ÔÂÛÏàËٶȵĵç×ÓµÈÀë×ÓÌ岨À´¼ÓËÙµç×Ó[3 -5 ] . µÈÀë×ÓÌåⲨµÄ³¡Ç¿½Ó½üÓÚËùνµÄµÈÀë×ÓÌå²¨ÆÆÁÑ·ù¶È$ {E}_{0}={m}_{\mathrm{e}}{\omega }_{\mathrm{p}}c/e $ , ÆäÖÐ$ {\omega }_{\mathrm{p}}=\sqrt{4\mathrm{\pi }{n}_{0}{e}^{2}/{m}_{\mathrm{e}}} $ ΪµÈÀë×ÓÌåÕñµ´ÆµÂÊ, $ {n}_{0} $ ΪµÈÀë×ÓÌåµç×ÓÃܶÈ, $ e $ Ϊµç×ÓµçºÉ, $ {m}_{\mathrm{e}} $ Ϊµç×ÓÖÊÁ¿, $ c $ Ϊ¹âËÙ. ¸Ã³¡Ç¿±È´«Í³¼ÓËÙÆ÷²úÉúµÄ¼ÓËٵ糡¸ß³öºÃ¼¸¸öÊýÁ¿¼¶[6 ] , ʹµÃµÈÀë×ÓÌåⲨ¼ÓËÙÒѾ³ÉΪδÀ´×îÓÐǰ¾°µÄÐÂÐͼÓËÙ·½Ê½Ö®Ò», ÎüÒýÁËÖÚ¶à¹úÄÚÍâÑо¿ÕßµÄÄ¿¹â[7 -9 ] . ÔÚÖÚ¶àµÈÀë×ÓÌåⲨ¼ÓËٵķ½°¸ÖÐ, ÖÊ×ÓÊøÎ²²¨¼ÓËÙ×îÔçÓÉCaldwellµÈ[10 ] ÔÚ2009ÄêÌá³ö, ËüµÄ»úÖÆÓëµç×ÓÊøÇý¶¯Î²²¨¼ÓËÙ¼«ÎªÏàËÆ, ¶¼ÊÇͨ¹ýÒ»ÊøºÜ¶ÌµÄ´øµçÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖм¤·¢Î²²¨. ÓÉÓÚÖÊ×ÓµÄÖÊÁ¿Ô¶Ô¶´óÓÚµç×Ó, ×÷ΪⲨÇý¶¯Ô´µÄÖÊ×ÓÊøËùЯ´øµÄÄÜÁ¿Ò²Ô¶Ô¶µØ³¬¹ýÁ˼¤¹âºÍµç×ÓÊøµÄÄÜÁ¿, ÕâʹµÃÖÊ×ÓÊøÇý¶¯µÄⲨ¼ÓËÙ³ÉΪĿǰ×îÓпÉÄÜͨ¹ýµ¥¼¶¼ÓËÙ°ÑÇá×ÓÄÜÁ¿¼ÓËÙµ½TeVÁ¿¼¶µÄ¼ÓËÙ·½Ê½[11 ] . È»¶øÖ»Óг¤¶È½Ó½üÓÚµÈÀë×ÓÌåµÄ²¨³¤$ {\lambda }_{\mathrm{p}}=c/{\omega }_{\mathrm{p}} $ µÄÖÊ×ÓÊø²ÅÄÜÔÚµÈÀë×ÓÌåÖвúÉú½Ó½üÓÚ²¨ÆÆµÄµç³¡Ç¿¶È, ²¢ÇÒÏÖÓеļ¼ÊõÊÖ¶ÎȴûÓа취»ñµÃÈç´ËÖ®¶ÌµÄ¸ßÄÜÖÊ×ÓÊø. ÔÚ2010ÄêKumarµÈ[12 ] Ìá³öÁËͨ¹ý³¤ÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖÐͨ¹ý×Ôµ÷ÖÆ²»Îȶ¨ (self-modulation instability) À´¼¤·¢µÈÀë×ÓÌåⲨµÄ¸ÅÄî. µ±Ò»Êø³¤ÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥Ê±, ÖÊ×ÓÊø±¾Éí²úÉúµÄÖÜÆÚÐÔºáÏòµ÷ÖÆ»áʹµÃ³¤ÖÊ×ÓÊø×ÝÏò½á¹¹·¢ÉúÑÝ»¯, ´Ó¶ø²úÉúµÈÀë×ÓÌ岨µÄ½Ø¶ÏЧӦ, ʹµÃÖÊ×ÓÊøÑݱä³ÉÒ»³¤´®ÓëµÈÀë×ÓÌ岨³¤ÏàÆ¥ÅäµÄ¶ÌÖÊ×ÓÊø´®. ÓÉ´Ë¿ÉÒÔ¼¤·¢³öÒ»¸ö·Ç³£Ç¿µÄµç³¡, ÓÃÀ´¼ÓËÙÍⲿעÈëµÄµç×ÓÊø. Õâ¸öÀíÂÛÒÑÓÚ2018ÄêÔÚÅ·ÖÞºË×ÓÖÐÐÄ(CERN)±»AWAKEʵÑéºÏ×÷×é֤ʵ[13 ,14 ] . ËûÃÇÔÚʵÑéÖÐʹÓÃÁËÒ»Êø³¤6 cm¡¢ÖÐÐÄÄÜÁ¿400 GeVµÄÖÊ×ÓÊø. ÔÚÖÊ×ÓÊøÍ¨¹ý³¤¶È10 mµÄµÈÀë×ÓÌå¹ÜµÀÖ®ºó, ¸ßËÙÉãÏñ»úÅÄÉãÏÂÁËÖÊ×ÓÊø×Ôµ÷ÖÆÖ®ºó·ÖÁѳÉÒ»³¤´®¶ÌÖÊ×ÓÊøµÄͼÏñ. ÔÚ¸ÃʵÑéÖÐ, ÖÊ×ÓÊø´®¼¤·¢µÄµÈÀë×ÓÌåⲨ½«Íâ×¢ÈëµÄÄÜÁ¿Ô¼18 MeVµÄµç×ÓÊø¼ÓËÙÖÁ½ü2 GeVµÄ×î¸ßÄÜÁ¿[15 ] . µ«ÊÇ, ÃÀÖв»×ãµÄÊÇ, ÖÊ×ÓÊø×Ôµ÷ÖÆµÄ¹ý³Ì»á³ÖÐø²»¶ÏµØ·¢Õ¹, ÌØ±ðÊÇÓÉÓÚÖÊ×ÓÊøÍ·²¿µÄ³ÖÐøÀ©É¢ºÍºóÍË, ×îÖÕµ¼ÖÂÁËÕû¸öⲨÏàλµÄµ¹ÍË, ´Ó¶øÆÆ»µÁËÖÊ×ÓÊø´®µÄÐͬÐÔ, Ôì³ÉÁ˺óÆÚⲨµç³¡Ç¿¶ÈµÄϽµ, ͬʱҲʹµÃⲨµÄÏàËÙ¶ÈϽµ, ²»ÀûÓÚ¼ÓËÙ´øµçÁ£×Ó. ÕâÒ»ÏÖÏóÒѾ±»ÀíÂÛºÍʵÑéËùÖ¤Ã÷[13 -16 ] . Ïà¹ØÖÊ×ÓÊø×Ôµ÷ÖÆµÄÀíÂÛÒѾ±»ºÜ¶àÎÄÕÂËù²ûÊö[17 -21 ] , ÕâЩÎÄÕ½ÒʾÁË×Ôµ÷ÖÆÕâÒ»²»Îȶ¨ÐÔ¹ý³ÌµÄÔö³¤ÂÊ¡¢ÏàËٶȵı仯µÈ, ¿ÉÒÔ˵ÔÚÏßÐÔ»¯½×¶Î, ¸ÃÀíÂÛÒѾ·¢Õ¹µÃÏ൱³ÉÊì. ½üÄêÀ´, Ëæ×ÅÈËÃǶÔ×Ôµ÷ÖÆÕâÒ»¹ý³ÌÑо¿µÄÉîÈë, ÀûÓÃÖÖ×ÓµÈÀë×ÓÌåⲨ¿ØÖÆ×Ôµ÷ÖÆ(seeding-self-modulation)µÄÏë·¨Öð½¥³öÏÖÔÚÁËÈËÃǵÄÊÓÏßÖ®ÖÐ. Ëüͨ¹ýÔÚÖÊ×ÓÊøµÄǰ·½Ìí¼ÓÒ»¸ö¼¤¹âÊø»òÕ߶̵ç×ÓÊø, ÒÀ¿¿¼¤¹âÊø[18 ] »òÕ߶̵ç×ÓÊø[22 ] ²úÉúµÄⲨ×÷ΪÖÖ×ÓÀ´µ÷ÖÆÖÊ×ÓÊø, ´Ó¶øÊ¹µÃÕû¸ö×Ôµ÷ÖÆµÄ¹ý³Ì±äµÃ¿É¿Ø. 2020ÄêLotovºÍMinakov[23 ] ͨ¹ýÀíÂÛÑо¿ÓëÊýֵģÄâ, ·¢ÏÖͨ¹ý°Ñ¶Ìµç×ÓÊøÖÖ×ÓⲨ×Ôµ÷ÖÆÓëµÈÀë×ÓÌåÃܶÈÌݶÈÏà½áºÏ, ¿ÉÒÔ»ñµÃÒ»¸öÏà¶ÔÎȶ¨¡¢µç³¡Ç¿¶ÈÓÖ±£³ÖÔڽϸßË®×¼µÄⲨ. ×ÛÉÏËùÊö, ÀûÓÃÖÖ×ÓµÈÀë×ÓÌ岨À´¿ØÖÆÖÊ×ÓÊøµ÷ÖÆ¹ý³Ì¾ßÓо޴óµÄDZÁ¦, Ò²ÊÇĿǰAWAKEÏîÄ¿µÄÖ÷ÒªÑо¿·½ÏòÖ®Ò». Õâ·½ÃæµÄÑо¿²Å½øÈëÈËÃǵÄÊÓÏß, ¶ÔÓÚÆä»úÖÆÒÔ¼°µç×ÓÊø¶ÔÖÊ×ÓÊøÇý¶¯µÄⲨÏàËٶȵÄÓ°ÏìĿǰÉÐûÓб»ÍêÈ«ÈÏÖª. ÓÉÓÚµç×ÓÔÚⲨÖмÓËÙÄÜÁ¿×îÖÕÈ¡¾öÓÚⲨµÄÏàËÙ¶È, Òò´ËÈçºÎ¿ØÖÆÎ²²¨ÏàËÙ¶È¡¢²¢¾¡¿ÉÄÜÌá¸ßÕâ¸öÏàËÙ¶ÈÖÁ·Ç³£½Ó½üÕæ¿ÕÖйâËÙÊǸöÖØÒªÑо¿¿ÎÌâ. ±¾ÎÄÖ÷ÒªÑо¿ÒÔµç×ÓÊøÇý¶¯µÈÀë×ÓÌåⲨ×÷ΪÖÖ×ÓµÄÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³Ì, ¼°Æä²úÉúµÈÀë×ÓÌåⲨµÄÏàËٶȱ仯, ²¢¸ù¾ÝÄ£Äâ½á¹û̽ÌÖÖÊ×ÓÊøÎ²²¨ÏàËÙ¶ÈÓëµç×ÓÊøµÄ¹ØÁª. ͨ¹ý¶þάÖù×ø±êÄ£ÄâÈí¼þLCODE[24 ] , Ñо¿²»Í¬µçºÉÃܶȡ¢ÄÜÁ¿µÄ¶Ìµç×ÓÊø¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌµÄÓ°Ïì, ÌØ±ðÊÇÖÊ×ÓÊøÎ²²¨ÏàËٶȵı仯, ͬʱ»¹²ûÊöÁ˶̵ç×ÓÊøÔÚµÈÀë×ÓÌåÖÐ×ÔÉíµÄÑÝ»¯¶Ô¸ÃÏàËٶȵÄÓ°Ïì, ΪÖÊ×ÓÊøÇý¶¯Î²²¨¼ÓËÙµÄÏà¹ØÑо¿Ìṩ²Î¿¼.2.ÀíÂÛÄ£ÐÍÓëÊýֵģÄâ Ê×ÏȽéÉܹØÓÚÖÖ×Ó×Ôµ÷ÖÆµÄÀíÂÛÄ£ÐÍ. Ïà¹ØµÄÄ£ÐÍǰÈËÒѾÓÐËùÑо¿[19 -21 ] , µ«ÊǺÍÏàÓ¦µÄÄ£Äâ½á¹û²¢²»Ò»ÖÂ, ¿É¼ûÏà¹ØµÄÀíÂÛ²¢²»ÍêÉÆ. ¶ø¹ØÓÚÎÞÖÖ×ÓÇé¿öϵÄÖÊ×ÓÊø×Ôµ÷ÖÆµÄÀíÂÛÄ£ÐÍÔòÒѾ·¢Õ¹µÃÏ൱Í걸. ÔÚÎÞÖÖ×Ó×Ôµ÷ÖÆµÄ¶þάÀíÂÛÄ£ÐÍÖÐ, Ò»Êø·Ç³£³¤µÄ¾ùÔÈÖÊ×ÓÊøÑØ×Å$ z $ ·½ÏòÒÔ$ {v}_{\mathrm{b}} $ µÄËÙ¶ÈÔÚ¾ùÔȵÈÀë×ÓÌåÖд«Êä. ÓÉÓÚÖÊ×ÓÊøµÄÄÜÁ¿·Ç³£´ó, ¿ÉÒÔÖ±½ÓºöÂÔÖÊ×ÓÔÚ×ÝÏòµÄÎ»ÒÆ. ÄÇô, ¿ÉÒÔд³öËüµÄ°üÂç·½³Ì[21 ] : ·½³ÌÖÐ$ {\epsilon}_{\mathrm{n}} $ ΪÖÊ×ÓÊøµÄ¹éÒ»»¯·¢Éä¶È, $ {r}_{\mathrm{b}} $ ΪÖÊ×ÓÊø°ë¾¶, $ f\left(\xi \right) $ ΪÖÊ×ÓÊøµÄ×ÝÏò·Ö²¼, $ t $ Ϊʱ¼ä, $ \gamma $ ΪÖÊ×ÓµÄÂåÂ××ÈÒò×Ó, $ {k}_{\mathrm{p}}={\omega }_{\mathrm{p}}/c=\sqrt{4\mathrm{\pi }{n}_{0}{e}^{2}/{m}_{\mathrm{e}}{c}^{2}} $ ΪµÈÀë×ÓÌ岨Êý, $ {n}_{0} $ ΪµÈÀë×ÓÌåµç×ÓÃܶÈ, ÆäÖÐ${k}_{\mathrm{b}}= $ $ {\omega }_{\mathrm{b}}/c=\sqrt{4\mathrm{\pi }{n}_{\mathrm{b}}{e}^{2}/{m}_{\mathrm{p}}{c}^{2}}$ , $ {n}_{\mathrm{b}} $ ΪÖÊ×ÓÊøÃܶÈ, $ {m}_{\mathrm{p}} $ ΪÖÊ×ÓÖÊÁ¿, ´«²¥×ø±ê±äÁ¿$ \xi ={v}_{\mathrm{b}}t-z\approx ct-z $ , K 1 ºÍI 2 ÔòÊDZ´Èû¶ûº¯Êý. ·½³ÌµÄ×ó±ßµÚ¶þÏîÀ´×ÔÓÚÖÊ×ÓÊø·¢Éä¶Èµ¼ÖµĺáÏòÅòÕÍ, ¶øÓұߵÚÒ»ÏîÔòÀ´×ÔÓÚµÈÀë×ÓÌåºáÏòⲨ´øÀ´µÄÔ˶¯Ç÷ÊÆ. ͨ¹ý¼ÙÉè$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $ , ͬʱ¼Ù¶¨¾ßÓÐÒ»¶¨³¤¶ÈµÄ¾ùÔÈÖÊ×ÓÊø$ f\left(\xi \right)=1 $ , ·½³Ì(1 )¿ÉÒÔת±äΪ[21 ] ÆäÖз½³ÌµÄÓÒ±ßÊÇ$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $ Çé¿öϵĶþάÁ£×ÓÊø²úÉúµÄºáÏòⲨ·Ö²¼. ¿ÉÒÔͨ¹ýËüÀ´ÒýÈëµç×ÓÊøµÄºáÏòⲨ. ÕâÀï¼ÙÉèµç×ÓÊøµÄ³¤¶ÈΪ$ {\xi }_{1} $ , °ë¾¶µÈÓÚÖÊ×ÓÊøµÄ°ë¾¶(ͬÑù·ûºÏ$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $ ), ÃܶÈΪ$ N{n}_{\mathrm{b}} $ , ¾ùÔÈ·Ö²¼ÔÚ0¡ª$ {\xi }_{1} $ Ö®¼ä, ÕâÒâζ×ÅÔÚÄ£ÐÍÖÐ, ÖÊ×ÓÊø½ô¸úÔÚµç×ÓÊøµÄºó·½, Á½ÕßÖ®¼äµÄ¾àÀëΪ0. ÁíÍâÔڸ÷½³ÌÖÐ, ¼Ù¶¨µç×ÓÊøµÄ·Ö²¼²»ËæÊ±¼äÑÝ»¯. °Ñµç×ÓÊøµÄ·Ö²¼´úÈë·½³ÌÖ®ºó, ¾ÍµÃµ½ÁËÒ»¸öеİüÂç·½³Ì: ¸Ã·½³Ì°üº¬ÁËÖÊ×ÓÊøÇ°·½µç×ÓÊøµÄ×ÝÏòⲨ·Ö²¼. ´Ó¸Ã·½³Ì¾Í¿ÉÒÔ¿´³ö, µç×ÓÊø²úÉúµÄºáÏòⲨ¾ÍÊǵç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆÓëÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌÖ®¼ä×î´óµÄ²»Í¬Ö®´¦. ½Ó×ŶԷ½³Ì(3 )×öÏßÐÔ»¯´¦Àí[19 ] , ¼ÙÉè$ {\mathrm{r}}_{\mathrm{b}}\approx {r}_{0}+{r}_{1} $ , $ {r}_{0} $ ΪÖÊ×ÓÊø×îÖÕÆ½ºâ̬, $ {r}_{1} $ ΪÖÊ×ÓÊø×Ôµ÷ÖÆÆÚ¼ä²úÉúµÄ°ë¾¶ÈŶ¯, ²¢ÇÒ$ {r}_{1}\ll {r}_{0} $ , ÁíÍâ¼ÙÉè°üÂçÅòÕ͵ÄËٶȱȽϻºÂý${r}_{1}=\hat{r}\exp\left(\mathrm{i}\xi \right)+\mathrm{C}.\mathrm{C}$ , ¼°$\left|{\partial }_{\xi }\hat{r}\right|\ll \hat{r}$ . ÕâÑù¾ÍµÃµ½Á˼ò»¯ºó¹ØÓÚ$\hat{r}$ µÄ·½³Ì: ÆäÖÐ$ {k}_{\mathrm{\beta }}^{2}={k}_{\mathrm{b}}^{2}/2\gamma $ , ÁíÍâ¼ÙÉè·½³ÌµÄ³õʼÌõ¼þΪ$\hat{r}\left(z, \xi =0\right)=\mathrm{\delta }r\varTheta \left(z\right)$ , $\hat{r}\left(z=0, \xi \right)=\mathrm{\delta }r$ , ${\partial }_{z}\hat{r}(z=0, \xi ) $ $ =0$ [19 ] , $ \varTheta \left(z\right) $ Ϊ½×Ìݺ¯Êý, $ \mathrm{\delta }r $ Ϊ¼ÙÉèÖÐÖÊ×ÓÊø°ë¾¶ÔÚ³õʼʱ¿ÌµÄ΢СÈŶ¯, ÓÚÊÇ¿ÉÒԵõ½·½³ÌµÄ½â: ÓÉ´Ë¿ÉÖª, µ±µç×ÓÊøÃܶȷdz£Ð¡Ê±, ÖÖ×Ó×Ôµ÷ÖÆµÄÕû¸ö¹ý³Ì½«½Ó½üÓÚÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³Ì. ͨ¹ý°ÑÖÊ×ÓÊø°ë¾¶·Ö²¼´úÈëµÈÀë×ÓÌåⲨ¼ÆË㹫ʽ, ¾Í¿ÉÒÔ¼ÆËã³öµÈÀë×ÓÌåⲨµÄÇ¿¶È. ÔÙÒýÈëÎÄÏ×[19 ]ÖеÄÏàËٶȹ«Ê½ ÆäÖÐ$\tilde {S}{\hat{E}}_{z}$ Ϊµç³¡${\hat{E}}_{z}$ µÄÐ鲿, $\hat{R}{\hat{E}}_{z}$ Ϊµç³¡${\hat{E}}_{z}$ µÄʵ²¿. ͨ¹ý(6 )ʽ, Çó½âⲨµÄÏàËÙ¶È, ¾Í¿ÉÒԵõ½´æÔÚÖÖ×Óβ²¨Ê±ÖÊ×ÓÊøµ÷ÖÆÎ²²¨µÄÏàËÙ¶ÈËæÊ±¼ä¼°¿Õ¼äµÄ·Ö²¼.ͼ1 Ϊͨ¹ýÉÏÊö¹«Ê½½øÐÐÊýÖµÇó½âµÃµ½µÄÏàËÙ¶È·Ö²¼. ͼ1 ÖÐËùʹÓõĵÈÀë×ÓÌåÃܶÈΪ$ {n}_{0}= $ $ 7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $ , ÖÊ×ÓÊøÃܶÈΪ$ {n}_{\mathrm{b}}=0.0056{n}_{0} $ , ¾ùÔÈ·Ö²¼, ¶øµç×ÓÊø³¤¶È$ {\xi }_{1}=1.57 c/{\omega }_{\mathrm{p}} $ , ÃܶÈΪ¾ùÔÈ·Ö²¼. ͼÖзֱð¼ÆËãÁ˵ç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}}=0{n}_{\mathrm{b}} $ , $ 0.25{n}_{\mathrm{b}} $ , $ 0.5{n}_{\mathrm{b}} $ , $ 1{n}_{\mathrm{b}} $ , $ 10{n}_{\mathrm{b}} $ , $ 20{n}_{\mathrm{b}} $ ʱµÄÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌÔڦΠ= 100ʱµÄⲨÏàËÙ¶È·Ö²¼. Èçͼ1(a) Ëùʾ, ÔÚµç×ÓÊøÃܶȷdz£Ð¡µÄÇé¿öÏÂ, ÖÖ×Ó×Ôµ÷ÖÆÎ²²¨ÏàËÙ¶ÈÓëÎÞµç×ÓÊøÇé¿öϵÄÖÊ×ÓÊø×Ôµ÷ÖÆ¼¸ºõÒ»ÖÂ, ÏàËٶȽö½öÓÐ׿«Æäϸ΢µÄ²î¾à. ¶ø´Óͼ1(b) Ôò¿ÉÒÔ¿´µ½, ÔÚµç×ÓÊøÃܶȽϴóʱ, Õû¸ö×Ôµ÷ÖÆ¹ý³ÌÖеÄⲨÏàËÙ¶ÈËæ×ŵç×ÓÊøµÄÃܶÈÔö´óÓÐ×ÅÃ÷ÏÔµÄÌá¸ß. ²¢ÇÒÏàËٶȵÄ×îÐ¡ÖµÒ²ËæÖ®Î¢ÈõµØÏò×óÒÆ¶¯, ÕâÒ²±íʾÕû¸ö×Ôµ÷ÖÆ¹ý³ÌËæ×ŵç×ÓÊøÃܶȵÄÔö¼Ó¶ø¼Ó¿ì, µç×ÓÊø¾ßÓÐÌá¸ß×Ôµ÷ÖÆÔö³¤ÂʵÄÌØÐÔ. ͼ 1 ÔÚ$ \xi =100 c/{\omega }_{\mathrm{p}} $ ´¦Î²²¨ÏàËÙ¶ÈËæÊ±¼ä±ä»¯¡¡(a) µç×ÓÊøÃܶȽϵÍʱ; (b) µç×ÓÊøÃܶȽϴóʱ Figure1. Change of the phase velocity with time at $ \xi =100 c/{\omega }_{\mathrm{p}} $ : (a) Low electron beam density; (b) high electron density. ÉÏÊöµÄ¼ÆËãʹÓÃÁËÒ»¸ö¼ÙÉè, ÓÉÓÚ$ {r}_{0} $ ±ØÈ»ÊǸö²»Îª¸ºµÄʵÊý, µ±$1-2 N\sin\left(\xi - {{\xi }_{1}}/{2}\right)\sin\left(-{\xi }_{1}\right)$ Ϊһ¸ö¸ºÊýʱ, Ö±½Ó¼Ù¶¨$ 1/{r}_{0}=0 $ , ÁíÍâ, ÔÚN µÄȡֵ·Ç³£´óµÄÇé¿öÏÂ, ±ÈÈçN = 40, ´Ëʱµç×ÓÊø²úÉúµÄµç³¡ÒѾ´¦ÓÚ·ÇÏßÐÔÇ¿¶È, ¶ø±¾ÀíÂÛÖ»ÊÊÓÃÓÚÏßÐÔ½×¶Î, ËùÒÔÉÏÊöµÄÀíÂÛÆäʵ¶ÔÓÚN ÓÐÒ»¸öÊÊÓ÷¶Î§. ½Ó×Åͨ¹ýLCODE³ÌÐòÄ£ÄâÀíÏë״̬ÏÂ, Ïàͬ·Ö²¼¡¢²»Í¬µçºÉÁ¿µÄµç×ÓÊøËùÒý·¢µÄÖÖ×Ó×Ôµ÷ÖÆÖв»Í¬Î»Öᢲ»Í¬Ê±¿Ì×ÝÏòⲨ¼«ÖµµÄλÖñ仯. LCODEÊÇÓÉLotov¿ª·¢µÄ¶þάÖù×ø±êÄ£ÄâÈí¼þ[25 ] , רÃÅÓÃÓÚÄ£ÄâÖù¶Ô³ÆÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥ËùÒýÆðµÄⲨ¼¤·¢ºÍµç×Ó¼ÓËÙ¹ý³Ì. ÔÚÄ£ÄâÖÐ, ѡȡµÄÄ£Äâ´°¿Ú³¤¶ÈΪ${600\; c/\omega }_{\mathrm{p}} $ , µÈÀë×ÓÌåµÄÃܶÈΪ$ {n}_{0}=7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $ ÇÒ¾ùÔÈ·Ö²¼, ÖÊ×ÓÊø³¤¶È$L= $ $ 1500\; c/\omega _{\mathrm{p}}$ (~3 cm), °ë¾¶$ {{r}_{\mathrm{b}}=1 c/\omega }_{\mathrm{p}} $ (~200 ¦Ìm), ÖÐ ÐÄÄÜÁ¿$ {E}_{\mathrm{b}}=400\;\mathrm{G}\mathrm{e}\mathrm{V} $ , ÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}}=0.0056\;{n}_{0} $ , ×ÝÏòÃܶÈΪ¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼. ËùʹÓõĵç×ÓÊøÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}\mathrm{e}} $ , ×ÝÏò¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼, µç×ÓÊø³¤¶È${{\xi }_{1}=\dfrac{\mathrm{\pi }}{2} c/}\omega _{\mathrm{p}}$ , °ë¾¶$ {{r}_{\mathrm{b}\mathrm{e}}=1\; c/\omega }_{\mathrm{p}} $ , ½ô¸úÔÚÖÊ×ÓÊøºó·½, Ë«·½Ö®¼äûÓмä¸ô. ÕâÀïÏÈ¿¼ÂÇÒ»¸öÀíÏëÇé¿ö, °Ñµç×ÓµÄÄÜÁ¿ÉèÖÃΪ${E}_{\mathrm{b}\mathrm{e}}= $ $ {10}^{15}\;\mathrm{G}\mathrm{e}\mathrm{V}$ , ÔÚÄÜÁ¿Èç´Ë¸ßµÄÇé¿öÏÂ, µç×ӵķֲ¼²»»áËæÊ±¼äÑÝ»¯, Èç´Ë¾Í¿ÉÒÔÓëÉÏÊöµÄÀíÂÛ½øÐбȽÏ.ͼ2(b) ¡¢Í¼2(d) ºÍͼ2(f) ·Ö±ð¸ø³öÁËÔÚÉÏÊöÌõ¼þϸıäµç×ÓÊøµÄÖÐÐÄÃܶÈËùÄ£Äâ³öµÄÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨ÏàËÙ¶ÈÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ¶øÍ¼2(a) ¡¢Í¼2(c) ºÍͼ2(e) ¸ø³öÁËÉÏÊöÌõ¼þÏÂÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨µç³¡×î´óÖµÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͨ¹ý¶Ô±ÈÕâЩͼÏñ¿ÉÒÔ·¢ÏÖ, Ëæ×ŵç×ÓÊøÖÐÐÄÃܶȵÄÔö¼Ó, µç³¡×î´óÖµ·åÖµ³öÏÖµÄʱ¼äÔÚÕû¸ö×Ôµ÷ÖÆµÄ¹ý³ÌÖÐÔ½À´Ô½Ôç(´ÓÎÞµç×ÓÊøµÄ´óÔ¼$20000c/{\omega }_{\mathrm{p}}$ µ½$ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ ʱµÄ´óÔ¼$10000c/{\omega }_{\mathrm{p}}$ ), Ïà¶ÔÓ¦µÄⲨÏàËٶȱ仯½á¹¹Ò²ÓÐ×ÅͬÑùµÄ±ä»¯, Óɴ˿ɼû, µç×ÓÊøµÄÒýÈë¿ÉÒÔÌá¸ß×Ôµ÷ÖÆµÄÔö³¤ÂÊ, ѹËõÕû¸ö×Ôµ÷ÖÆ¹ý³Ì´Ó³õʼµ½±¥ºÍËùÐèµÄʱ¼ä, ²¢ÇÒËæ×ŵç×ÓÊøµÄµçºÉÁ¿µÄÔö¼Ó, Õû¸ö¼ÓËٵij̶ÈÓú·¢Ã÷ÏÔ. ͼ 2 µç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆÄ£Äâ½á¹û¡¡(a) ÎÞµç×ÓÊøÊ±µÄ×î´óµç³¡·Ö²¼; (b) ÎÞµç×ÓÊøÊ±µÄÏàËÙ¶È·Ö²¼; (c) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 1{n}_{\mathrm{b}} $ ʱµÄ×î´óµç³¡·Ö²¼; (b) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 1{n}_{\mathrm{b}} $ ʱµÄÏàËÙ¶È·Ö²¼; (e) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 10{n}_{\mathrm{b}} $ ʱµÄ×î´óµç³¡·Ö²¼; (f) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 10{n}_{\mathrm{b}} $ ʱµÄÏàËÙ¶È·Ö²¼ Figure2. Results of the simulation: (a) Distribution of Emax when no seeding; (b) distribution of phase velocity when no seeding; (c) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $ ; (d) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $ ; (e) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ ; (f) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ . ͼ3(a) ¸ø³öÁËÔÚ²»Í¬µç×ÓÊøÌõ¼þÏÂⲨµÄ·åÖµÏàλ±ä»¯Çé¿ö. ͨ¹ý¶Ô±Èͼ3(a) Öеĸ÷¸öÇúÏßµÄתÕÛµãλÖÃ, ¿ÉÒÔ·¢ÏÖËùÓеÄÇúÏß¶¼ÓµÓÐÏàͬµÄ±ä»¯¹æÂÉ, ËüÃǵı仯Ç÷ÊÆÒ²ÊÇÏàͬµÄ, Ωһ²»Í¬µÄÊÇÏàËٶȹյãµÄλÖúÍÏàËٶȵĴóС. ͼ3(b) ºÍͼ3(c) Ôò¸ø³öÁË($\xi =100\; c/{\omega }_{\mathrm{p}} $ Óë$\xi =300\; c/{\omega }_{\mathrm{p}} $ ´¦)²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $ ϸ÷´¦Î²²¨ÏàËÙ¶ÈËæÊ±¼äµÄ±ä»¯Çé¿ö. ͨ¹ý¶Ô±Èͼ3(b) ºÍͼ3(c) ²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $ Çé¿öϵÄⲨÏàËÙ¶È¿ÉÒÔ·¢ÏÖ, Ïà±ÈÓÚÎÞµç×ÓÊøµ÷ÖÆ, ÔÚÓеç×ÓÊøµ÷ÖÆµÄÇé¿öÏÂ, ⲨÏàËÙ¶ÈÓÐËùÌáÉý, ¶øÇÒⲨµÄÔö³¤ÂÊÒ²Ã÷ÏÔÔö¼ÓÁË. ÖÊ×ÓÊø×Ôµ÷ÖÆµÄÔö³¤ÂÊËæ×ŵç×ÓÊøÖÐÐÄÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $ µÄÌá¸ß¶øÔö´ó, ´Ó¶øËõ¶ÌÁËÕû¸ö¹ý³ÌµÄʱ¼ä, ʹµÃⲨÏàËٶȵÄÑÝ»¯½øÕ¹¼Ó¿ì, ¸üÔçµØ´ïµ½Á˺óÆÚÏàËٶȽӽüÓÚ¹âËÙµÄÎȶ¨×´Ì¬. ÕâÓë֮ǰÀíÂÛÍÆµ¼Ëù¸ø³öµÄ½áÂÛÍêȫһÖÂ, µ«ÊÇ¿ÉÒÔ·¢ÏÖÄ£Äâ½á¹ûÓëÀíÂÛÏà±ÈÔÚϸ½ÚÉϲ¢²»Ò»ÖÂ, ¿É¼ûÏëÒª»ñµÃÒ»¸ö¾«È·µÄ¹ØÓÚÏàËٶȵķֲ¼, ÊýֵģÄâÈÔÈ»ÊDz»¿É»òȱµÄ. ͼ 3 (a) ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $ Çé¿öÏÂⲨ·åÖµÏàλµÄ±ä»¯; (b) $ \xi =100\; c/{\omega }_{\mathrm{p}} $ ´¦²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $ Ìõ¼þÏÂÄ£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯; (c) $ \xi =300\; c/{\omega }_{\mathrm{p}} $ ´¦²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $ Ìõ¼þÏÂÄ£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯ Figure3. (a) Phase change of the wakefield peak with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ ; (b) evolution of the phase velocity at $ \xi =100 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $ ; (c) evolution of the phase velocity at $ \xi =300 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $ . ͼ4 ¸ø³öÁË×ÝÏò×ø±ê$0 c/{\omega }_{\mathrm{p}}¡ª600 c/{\omega }_{\mathrm{p}} $ ·¶Î§µÄÄ£Äâ´°¿ÚÄÚ×ÝÏòµç³¡×î´óÖµËæÊ±¼äµÄ±ä»¯ÇúÏß, ´ÓͼÖеÄÇúÏ߱仯¿ÉÒÔÇåÎúµØ¿´³öËæ×ŵç×ÓÊøµÄµçºÉÁ¿ÌáÉý, Õû¸ö×Ôµ÷ÖÆ¹ý³ÌµÄÔö³¤ÂÊ(µç³¡Ôö³¤ÂÊ)ÓÐÁËÃ÷ÏÔµÄÌáÉý, Ëù´ïµ½µÄ×î´óµç³¡Ò²ËæÖ®Ìá¸ß. ͼ 4 ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $ Çé¿öÏÂ×î´óµç³¡ËæÊ±¼äµÄ·Ö²¼ Figure4. Evolution of the maximum electric field with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ . ×ÛÉÏËùÊö, µç×ÓÊø¿ÉÒÔÌáÉý×Ôµ÷ÖÆµÄÕû¸ö¹ý³ÌµÄ·¢Õ¹ËÙ¶È, ʹµÃÕû¸ö¹ý³ÌËùÐèµÄʱ¼äËõ¶Ì, ÕâҲʹµÃⲨÏàËٶȵı仯·ù¶È¼Ó¿ì, ¸üÔçµØ´ïµ½Á˺óÆÚÏàËٶȽӽüÓÚ¹âËÙµÄÎȶ¨×´Ì¬, ÓÐÀûÓÚºóÐøµÄµç×Ó¼ÓËÙ.3.µç×ÓÊø²ÎÊý¶ÔⲨÏàËٶȵÄÓ°Ïì ÉÏÒ»½ÚÌÖÂÛÁËÀíÏë״̬ϵç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌÖÐⲨÏàËٶȵÄÓ°Ïì, Ëù²ÉÓõĵç×ÓÊøÄÜÁ¿¼«¸ß, ʹÆäÔÚ´«Êä¹ý³ÌÖв»·¢Éú±ä»¯, ÊÇÒ»ÖÖ¼ò»¯ºóµÄÄ£ÐÍ. È»¶øÔÚʵ¼ÊµÄÇé¿öÖÐ, µç×ÓÊøµÄÄÜÁ¿²»¿ÉÄÜÈç´ËÖ®¸ß, ÏàÓ¦µØ, µç×ÓÊøÔÚµÈÀë×ÓÌå´«²¥µÄ¹ý³ÌÖÐ, ËüµÄÃܶȷֲ¼¡¢ÐÎ×´¡¢ÄÜÁ¿¶¼»á·¢Éú±ä»¯. ÕâЩ¸Ä±äÒ²»áÓ°ÏìⲨÏàËÙ¶È. ±¾½Ú¿¼ÂÇÁËÓÐÏÞÄÜÁ¿µç×ÓÊø´«Êä¹ý³ÌµÄÑÝ»¯¶ÔⲨÏàËٶȵÄÓ°Ïì. Ê×ÏȽéÉÜÀíÂÛ¼ÆËã. µ±µç×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥Ê±, Ëü»áÊܵ½Ò»¸öÀ´×ÔµÈÀë×ÓÌåµÄ¾¶ÏòµÄ×÷ÓÃÁ¦ÒÔ¼°±¾ÉíµÄ¿âÂØÅųâÁ¦, ÆäºáÏò³ß¶ÈÂú×ã[17 ] ÆäÖÐ$ \tau =t $ Ϊ´«²¥Ê±¼ä, I 1 ºÍK 1 ΪÐÞÕý±´Èû¶ûº¯Êý. ¼ÙÈçµç×ÓÊøµÄ·¢Éä¶È·Ç³£Ð¡, ÄÇôµç×ÓÊø½«Êܵ½Ò»¸ö¾¶ÏòѹËõµÄ×÷ÓÃÁ¦, ½øÈëÒ»¸ö×Ô¾Û½¹µÄ¹ý³Ì. ÔÚÕâ¸ö¹ý³ÌÖÐ, µç×ÓÊøµÄ°ë¾¶ÔÚ²»¶ÏµØ±äС, ÃܶÈÔÚ²»¶ÏµØ±ä¸ß, ´Ó¶øËüËù¼¤·¢µÄµç³¡Ò²ÔÚ²»Í£µØ±äÇ¿. ¼ÙÉèÁ£×ÓÊøµÄƽºâ̬Âú×ãÈçÏÂÌõ¼þ: ²¢ÇÒÁ£×ÓÊøµÄÍ·²¿Âú×ãÕæ¿ÕÖз¢Éä¶È×ÔÓÉÅòÕÍ·½³Ì[17 ] ¿ÉÒÔÀûÓ÷½³Ì(8 )ºÍ·½³Ì(9 )À´Çó½â³ö²»Í¬Ê±¿ÌÁ£×ÓÊøµÄƽºâ̬.ͼ5(a) ºÍͼ5(b) ¸ø³öÁËͨ¹ý(8 )ʽºÍ(9 )ʽ¼ÆËãµÄÒ»Êø³¤¶È${\xi }_{1}=\dfrac{\mathrm{\pi }}{2}c/{\omega }_{\mathrm{p}}$ , °ë¾¶$ r=1 c/{\omega }_{\mathrm{p}} $ , ·¢Éä¶È$ {\varepsilon }_{\mathrm{e}}=3\times {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m} $ , ÄÜÁ¿Îª$ {E}_{\mathrm{b}\mathrm{e}} $ µÄµç×ÓÊø¸Õ½øÈëµÈÀë×ÓÌåÖÐʱµÄƽºâ̬·Ö²¼. ¿ÉÒÔ¿´µ½µç×ÓÊøµÄ°ë¾¶, ÌØ±ðÊǺó°ë²¿·Ö, ÓÐÒ»¸ö·Ç³£Ã÷ÏÔµÄѹËõ. Óɴ˿ɼû, ÔÚµÈÀë×ÓÌåÖд«²¥µÄ³õÆÚ, µç×ÓÊø½«¾ÀúÒ»¸ö¼«ÆäÏÔÖøµÄѹËõ¹ý³Ì, ¶øÑ¹Ëõºó²úÉúµÄ¸ßÃܶÈÒ²×ÔȻʹµÃÆä²úÉúµÄµç³¡ÓÐÁ˾޴óµÄÌáÉý, ´Ó¶ø¸Ä±äÁËÕû¸öⲨµÄ·Ö²¼. ͼ 5 (a) µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}}=100\mathrm{M}\mathrm{e}\mathrm{V} $ ʱ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $ µÄƽºâ̬·Ö²¼; (b) $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ ʱ²»Í¬µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ µÄƽºâ̬·Ö²¼ Figure5. (a) Equilibrium configuration with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ when E be =100 MeV; (b) equilibrium configuration with different E when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ . ͼ6 ¸ø³öÁ˸ù¾Ý(7 )ʽ¡ª(9 )ʽ¼ÆËãËùµÃµÄ´æÔÚµç×ÓÊøÖÖ×Óʱ, ÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌÖÐµÄÆ½ºâ̬Ãܶȷֲ¼. ¼ÆËã¹ý³ÌÖÐËùʹÓõIJÎÊýÈçÏÂ: µÈÀë×ÓÌåÃܶÈ$ {n}_{0} $ , µç×ÓÊø³õʼÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}}=5{n}_{\mathrm{b}} $ , ¾ùÔÈ·Ö²¼, µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, ·¢Éä¶È${\varepsilon }_{\mathrm{e}}=3\times $ $ {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m}$ , ³¤¶È$ {\xi }_{1}=1.57 c/{\omega }_{\mathrm{p}} $ , ³õʼ°ë¾¶${r}_{\mathrm{b}\mathrm{e}}= $ $ c/{\omega }_{\mathrm{p}}$ ; ÖÊ×ÓÊøÃܶÈ$ {n}_{\mathrm{b}}=0.0056{n}_{0} $ , ×ÝÏòÎÞÏÞ³¤ÇÒ¾ùÔÈ·Ö²¼, ÖÐÐÄÄÜÁ¿Îª$ {E}_{\mathrm{b}} $ = 400 GeV, ·¢Éä¶È${\varepsilon }_{\mathrm{p}}= $ $ 3\times {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m}$ , ³õʼ°ë¾¶$ {r}_{\mathrm{b}}=c/{\omega }_{\mathrm{p}} $ . ¸Ã¼ÆËãÖвÉÓÃÁËÁ½¸ö¼ÙÉè: 1)ºöÂÔµç×ÓÊø°ë¾¶·Ö²¼µÄ±ä»¯, ¼´$ {r}_{\mathrm{b}\mathrm{e}}\left(\xi, t\right)={r}_{\mathrm{b}\mathrm{e}}\left(t\right) $ ; 2)ºöÂÔµç×ÓÊøµÄÄÜÁ¿Ë¥¼õ. Ê×ÏÈ, ͨ¹ýÉÏÊö¼ÙÉèºÍ·½³Ì(7 )ÇóµÃµç×ÓÊøÔÚijһʱ¿Ìϵİ뾶; Æä´Î, ½«µç×ÓÊø·Ö²¼ºÍÖÊ×ÓÊø²ÎÊý´úÈë·½³Ì(7 ), ´Ó¶øÇóµÃÔÚ¸Ãʱ¿Ìµç×ÓÊøºó·½µÄÖÊ×ÓÊøÆ½ºâ̬Ãܶȷֲ¼, ×îºóÔÙͨ¹ý$n\left(\xi, t\right)= $ $ {n}_{{\text{³õʼ}}}\left(\xi \right){q}_{\mathrm{b}}\dfrac{{\left({r}_{0}\right)}^{2}}{r{\left(\xi, t\right)}^{2}}$ ¼ÆËã³ö¸Ãʱ¿Ì¸÷¸ö×ÝÏòλÖÃµÄÆ½ºâ̬Ãܶȷֲ¼. ͼ6 ÖÐѡȡÁËÈý¸öʱ¿Ì($ t=0 $ , $ 410/{\omega }_{\mathrm{p}} $ , $ 589/{\omega }_{\mathrm{p}} $ ), ·Ö±ð¶ÔÓ¦×ŵç×ÓÊø°ë¾¶${r}_{\mathrm{b}\mathrm{e}}= $ $ c/{\omega }_{\mathrm{P}}$ , $ 0.75 c/{\omega }_{\mathrm{P}} $ , $ 0.5 c/{\omega }_{\mathrm{P}} $ ÈýÖÖÇé¿ö, չʾÁ˵ç×ÓÊø(0ÖÁÐéÏß·¶Î§ÄÚ)ºó·½ÖÊ×ÓÊøµÄƽºâ̬Ãܶȷֲ¼µÄ±ä»¯Í¼Ïñ. ͨ¹ý¶Ô±È²»Í¬Ê±¿ÌµÄÖÊ×ÓÊøÆ½ºâ̬Ãܶȷֲ¼, ¿ÉÒÔµÃÖªµ±µç×ÓÊø´¦ÓÚ±»Ñ¹Ëõ״̬ʱ(¿ÉÒÔ¿´µ½µç×ÓÊøµÄÃܶÈÔ½À´Ô½¸ß), ÖÊ×ÓÊøµÄ°üÂç»áÓÐÏòǰÔ˶¯µÄÇ÷ÊÆ, ÄÇôÏàÓ¦ÖÊ×ÓÊø²úÉúµÄⲨÏàλҲ»á´æÔÚÏòǰÔ˶¯µÄÇ÷ÊÆ, ÕâÒ²ÊÇÐγɳ¬¹âËÙⲨÏàËٶȵÄÖ÷ÒªÔÒò. ×ÜÖ®, µ±µç×ÓÊø´¦ÓÚ×Ô¾Û½¹×´Ì¬Ê±, ¿ÉÒԵõ½Ò»¸ö³¬¹âËÙµÄⲨÏàËÙ¶È. ͼ 6 µç×ÓÊøÑ¹ËõÒýÆðµÄÖÊ×ÓÊøÆ½ºâ̬±ä»¯, ¼´ÔÚÈý¸öʱ¿ÌµÄÖÊ×ÓÊøÆ½ºâ̬·Ö²¼ Figure6. Equilibrium configuration of proton beam with a compressing electron beam. ½ÓÏÂÀ´µÄÄ£ÄâÊÇ»ùÓÚ֮ǰµÄµÈÀë×ÓÌåºÍÖÊ×ÓÊø²ÎÊý, ¿¼ÂÇÁËÏàͬµç×ÓÊø·Ö²¼ºÍµçºÉÁ¿, µ«²»Í¬ÄÜÁ¿µÄÄ£Äâ²ÎÊý¶ÔⲨÏàËٶȵÄÓ°Ïì. ÔÚÄ£ÄâÖÐ, µÈÀë×ÓÌåµÄÃܶÈΪ$ {n}_{0}=7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $ ÇÒ¾ùÔÈ·Ö²¼, ÖÊ×ÓÊøÖÐÐÄÄÜÁ¿$ {E}_{\mathrm{b}}=400~\mathrm{G}\mathrm{e}\mathrm{V} $ , ³¤¶È$ {L=1500 c/\omega }_{\mathrm{p}} $ (´óÔ¼3 cm), °ë¾¶$ {r=1 c/\omega }_{\mathrm{p}} $ (´óÔ¼200 ¦Ìm), ÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}\mathrm{m}}=0.0056{n}_{0} $ , ×ÝÏò·Ö²¼Îª¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼. ËùʹÓõĵç×ÓÊø³¤¶È${{\xi }_{1}=\dfrac{\mathrm{\pi }}{2} c/\omega }_{\mathrm{p}}$ , °ë¾¶$ {r=1 c/\omega }_{\mathrm{p}} $ , µç×ÓÊøÖÐÐÄÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}\mathrm{m}}=10{n}_{\mathrm{b}} $ , ×ÝÏò·Ö²¼Îª¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼, µç×ÓÊøÖÐÐÄÄÜÁ¿×ܹ²Ñ¡È¡ÁËÈýÖÖ, ·Ö±ðÊÇ$ {E}_{\mathrm{b}\mathrm{e}}$ = 100 MeV, 500 MeV, 1 GeV.ͼ7(a) ¡ªÍ¼7(c) ¸ø³öÁËÔÚÉÏÊöÌõ¼þϸıäµç×ÓÊøµÄÄÜÁ¿(100 MeV, 500 MeV, 1 GeV)ËùµÃµ½µÄÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨µç³¡×î´óÖµÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͼ7(d) €¡ªÍ¼7(f) Ôò¸ø³öÁËÉÏÊöÌõ¼þÏÂÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨ÏàËÙ¶ÈÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͼ8(a) ºÍͼ8(b) ÔòÊÇÌôÑ¡ÁË$\xi =100 c/{\omega }_{\mathrm{p}}$ Óë$\xi = $ $ 300 c/{\omega }_{\mathrm{p}}$ µÄλÖÃ, ²»Í¬ÄÜÁ¿µÄµç×ÓÊøËùµÃµ½µÄⲨÏàËٶȽøÐбȽÏ. ¿ÉÒÔ·¢ÏÖ, ÔÚ×Ôµ÷ÖÆ³õʼµÄʱÆÚ, ³öÏÖÁËÏàËÙ¶È´óÓÚ¹âËÙµÄÏÖÏó, ÕâÓë֮ǰÌáµ½µÄµç×ÓÊø×Ô¾Û½¹ÀíÂÛÏà·ûºÏ. ÄÜÁ¿Ô½¸ß, ¸ÃÏÖÏó¾ÍÔ½²»Ã÷ÏÔ. ÁíÍâͨ¹ý¶Ô±Èͼ7 ºÍͼ8 ÖеÄÊý¾Ý, ¿ÉÒÔ·¢ÏÖ¶Ô×Ô¾Û½¹Æðµ½¹Ø¼ü×÷ÓõÄÓÐÁ½¸ö²ÎÊý, ¼´µç×ÓÊøµÄÄÜÁ¿ºÍÃܶÈ. Èç¹ûµç×ÓÊøµÄÄÜÁ¿¦Ã ¹ý¸ß, ÄÇôËüÊܵ½µÄ¾¶Ïò¼ÓËÙ¶ÈÒ²ËæÖ®¼õÈõ, Èçͼ8(a) ºÍͼ8(b) Ëùʾ, ×Ô¾Û½¹¶ÔÏàËٶȵÄÓ°Ïì³Ì¶ÈËæ×ÅÄÜÁ¿µÄÔö¸ß¶ø½¥½¥¼õÈõ. ¶øÈç¹ûÔöÇ¿µç×ÓÊøµÄÃܶÈ, Ôò×Ô¾Û½¹µÄËٶȾͻáÃ÷ÏÔ¼Ó¿ì, Õû¸ö×Ô¾Û½¹µÄ¹ý³ÌËùÒý·¢µÄ³¬¹âËÙÏàËÙ¶ÈÒ²»áÓú·¢Ã÷ÏÔ. ͼ 7 ÀûÓõç×ÓÊøÖÖ×ÓⲨµ÷ÖÆÖÊ×ÓÊøµÄÄ£Äâ½á¹û¡¡(a), (b), (c)·Ö±ð¶ÔÓ¦µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeVʱµÄ×î´óµç³¡ËæÊ±¼ä±ä»¯; (d), (e), (f) ·Ö±ð¶ÔÓ¦µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeVʱµÄÏàËÙ¶ÈËæÊ±¼ä±ä»¯ Figure7. Simulation of proton beam modulation with electron beam seeding:(a), (b), (c) The maximum electric fields as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$ , 500 MeV, and 1 GeV, respectively; (d), (e), (f) the phase velocity as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$ , 500 MeV, and 1 GeV, respectively. ͼ 8 (a) ÔÚ$ \xi =100 c/{\omega }_{\mathrm{p}} $ ´¦²»Í¬µç×ÓÊøÄÜÁ¿Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯; (b) ÔÚ$ \xi =300 c/{\omega }_{\mathrm{p}} $ ´¦²»Í¬µç×ÓÊøÄÜÁ¿Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯ Figure8. (a) Phase velocity as a function of time at $ \xi =100 c/{\omega }_{\mathrm{p}} $ for different electron energy; (b) phase velocity as a function of time at $ \xi =300 c/{\omega }_{\mathrm{p}} $ for different electron energy. ÁíÍâ, µç×ÓÊøÔÚⲨÖд«²¥Ê±»¹Êܵ½ÁËÒ»¸ö×ÝÏòµÄµç´ÅÁ¦[25 ] : ¶øÓëÖ®Ïà¶ÔµÄ, µç×ÓÊø×÷ΪⲨµÄÄÜÁ¿À´Ô´, Ëüÿʱÿ¿Ì¼õÉÙµÄÄÜÁ¿ÕýºÃÓëÖ®²úÉúµÄβ²¨Ç¿¶ÈÏà¶ÔÓ¦, ¿ÉÒԵóöµç´ÅÁ¦F Õý±ÈÓÚµç×ÓÊøÃܶÈn be , ÕâÒ²Òâζ×Å, µç×ÓÊøµÄÄÜÁ¿ºÄÉ¢ËÙ¶ÈÕý±ÈÓÚµç×ÓÊøËùЯ´øµÄµçºÉÁ¿. µ±µç×ÓÊøµÄÄÜÁ¿Ë¥ÍË, Æä·¢Éä¶ÈËùÒýÆðµÄÅòÕÍЧӦ»á³¬¹ýⲨÒýÆðµÄѹËõЧӦ, Õâ¸öʱºò, µç×ÓÊø¾Í»áÅòÕÍ, ËüµÄÃܶȽµµÍ, ´Ó¶ø²úÉúÁËÓëÉÏÊö×Ô¾Û½¹¹ý³ÌÏà·´µÄÏÖÏó, ʹµÃÏàËÙ¶ÈÓÐËù½µµÍ. ²»¹ý, ¼ÙÈçµç×ÓÊøÓÐ×Å×ã¹»µÄÄÜÁ¿, ÄÇôÕâ¸ö¹ý³Ì¾Í»á·¢ÉúµÄ±È½Ï»ºÂý. ÁíÍâ, µ±µç×ÓÊøµÄÄÜÁ¿ºÄ¾¡Ê±, Ëü»áÔÚ×ÝÏòÉϱäÐηÖÁÑ, ´Ó¶ø²úÉú²»Îȶ¨µÄÏàËÙ¶È, Èçͼ8(a) ºÍ8(b) Ëùʾ. ͬÀí, Èç¹û½µµÍµç×ÓÊøµÄµçºÉÁ¿, ÄÇôҲ×ÔÈ»¿ÉÒÔ¼õ»º¸Ã¹ý³Ì. µ±µÈÀë×ÓÌåⲨÖеĵ糡Ôö¼Óµ½½Ó½üÓÚE 0 ʱ, ÓÉÓÚÏà¶ÔÂÛ·ÇÏßÐÔЧӦ, µÈÀë×ÓÌåÖÐⲨµÄ²¨³¤¾Í»á±»À³¤[26 ] , ¿ÉÒÔ½üËÆÃèÊöΪ${\lambda }_{\mathrm{P}}= $ $ {\lambda }_{\mathrm{p}0}[1+\alpha {\left({E}_{\mathrm{m}}/{E}_{0}\right)}^{2}]$ , ÆäÖÐ$ {\lambda }_{\mathrm{p}0} $ ΪÏßÐÔÀíÂÛÖеĵÈÀë×ÓÌ岨³¤, $ \alpha $ ÊÇÒ»¸ö²ÎÊý. ¼Ù¶¨Õû¸ö³¤ÖÊ×ÓÊøËùÐγɵÄⲨ½á¹¹ÔÚ×ÝÏòÉϰüº¬ÁËN ¸ö²¨³¤, ÄÇôµ±Ã¿Ò»¸ö²¨³¤¶¼±»À³¤Ò»µãµãʱ, ¶ÔÓÚⲨµÄÏàλ, ÌØ±ðÊǾàÀëÖÊ×ÓÊøÍ·²¿½ÏÔ¶µÄλÖÃ, ¾ßÓм«´óµÄÓ°Ïì. Ò»°ã¶øÑÔ, ÎÞÂÛÊÇÖÊ×ÓÊø×Ôµ÷ÖÆ»¹Êǵç×ÓÊøÖÖ×ÓⲨÓÕµ¼µ÷ÖÆ, ËüÃǵÄⲨ´óÖ±仯¶¼ÊÇÏÈÉÏÉýºóϽµµÄ, ¶øËüÃDzúÉúµÄⲨËùÄÜ´ïµ½µÄ×î´óµç³¡´óÖÂÔÚ0.4E 0 ¡ª0.7E 0 . µ±Ò»¸öλÖõĵ糡´ÓE 1 ±ä»¯µ½E 2 ʱ, ¸ù¾ÝÉÏÊö$ {\lambda }_{\mathrm{P}} $ ¹«Ê½, ËüµÄ²¨³¤±ä»¯¼°Ïàλ±ä»¯´óԼΪ ËùÒÔ, µ±Î²²¨ÔÚ¿ìËÙÔö´óʱ, ¸Ã·ÇÏßÐÔЧӦ»áʹµÃⲨµÄÏàËÙ¶È·¢Éú¾Þ´óµÄϽµ, ²¢ÇÒËæ×ŦΠ(N )µÄÔö´ó¶øÓú·¢Ã÷ÏÔ; µ±Î²²¨ÔÚ¿ìËÙϽµÊ±, ⲨµÄÏàËÙ¶È»á¿ìËÙµØÉÏÉý, ÉõÖÁÓÚÍ»ÆÆ¹âËÙ, ²úÉú³¬¹âËÙµÄÏàËÙ¶È. È»¶ø¸Ã¹ý³ÌÊÇ·ÇÏßÐÔЧӦ, ºÜÄѱ»¾«È·ÃèÊö, Ö»Äܸù¾Ý¹«Ê½¶¨ÐÔÃèÊö³ö´óÖµÄÎïÀíͼÏñ. ¸Ã»úÖÆÔÚûÓÐÖÖ×Óµç×ÓÊøÎ²²¨´æÔÚµÄÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌÖÐÒ²»á¶ÔⲨÏàËٶȵÄÑÝ»¯Æðµ½Ïàµ±ÖØÒªµÄ×÷ÓÃ.4.ÖÊ×ÓÊø×ÝÏòÃܶȷֲ¼¶ÔⲨÏàËٶȵÄÓ°Ïì ÏÖ½ñAWAKEʵÑé[15 ] ÖÐËùʹÓõÄÄ£ÐͲ¢²»ÊÇÈçÒÔÉÏËùÊöµÄÔÚ×ÝÏòÉÏÍêÈ«¾ùÔÈ·Ö²¼, ¶øÊÇÓàÏÒº¯ÊýµÄ°ë²¨ÐÍ, º¯Êý±íÊöΪ${n}_{\mathrm{b}}\left(r, \xi \right)= \dfrac{{n}_{\mathrm{b}\mathrm{m}}}{2}\times $ $ \mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{{r}^{2}}{{\sigma }_{r}^{2}}\right)\left[1-\cos \left(2\mathrm{\pi }\xi /L\right)\right]$ , ÆäÖÐ$ {n}_{\mathrm{b}\mathrm{m}}=0.0056{n}_{0} $ ΪÖÐÐÄÃܶÈ, $ {\sigma }_{r}=1 c/{\omega }_{\mathrm{P}} $ , ËüÊÇÒ»¸ö×ÝÏòÃܶȴÓ0¿ªÊ¼ÉÏÉý²¢×îÖջص½0µÄÕâÑùÒ»ÖÖ·Ö²¼. ¸ÃʵÑéÀûÓü¤¹âÊø²úÉúµÄÒÆ¶¯µÈÀë×ÓÌå±ß½çÀ´¶ÔÖÊ×ÓÊø²úÉúµ÷ÖÆ. ÔÚûÓеç×ÓÊøµÄÇé¿öÏÂ, ÕâÑùµÄ¹ý³Ì·Ç³£²»ÀûÓÚÖÊ×ÓÊøµÄ×Ôµ÷ÖÆ, ÒòΪ²»½öÔö³¤ÂÊ»ºÂý, ¶øÇÒ¼«Ò×¼¤·¢Èí¹Ü²»Îȶ¨ÐÔ[14 ] , ²»ÀûÓÚºóÐøÁ£×ÓÊøµÄ¼ÓËÙ. ¶øÔÚÏÖÓеĵç×ÓÊøÖÖ×Óµ÷ÖÆ·½°¸[22 ] ÖÐ, µç×ÓÊøµÄÒýÈ뽫ʹµÃÔ±¾´¦ÓÚ¼¤¹âÊøÇ°°ë¶ÎµÄÖÊ×ÓÊøÒ²¿ÉÒÔÔËÓÃÓÚⲨ¼ÓËÙµÄÕû¸ö¹ý³Ì, ´Ó¶ø±ÜÃâ²»±ØÒªµÄÀË·Ñ. Ôڸ÷½°¸Öеç×ÓÊøÒýÈëËù´øÀ´µÄ±ä»¯ºÍÉÏÊöÒÆ¶¯µÈÀë×ÓÌå±ß½çÒýÆð×Ôµ÷ÖÆµÄ¹ý³ÌÓкܴóÇø±ð. ÔÚÒýÈëÉÏÊöµÄÖÊ×ÓÊø·Ö²¼µÄÇé¿öÏÂ, ±È½ÏÁËûÓеç×ÓÊøÓëÒýÈëµç×ÓÊøµÄÇé¿ö. ÔÚÓеç×ÓÊøµÄÄ£ÄâÖÐ, µç×ÓÊøµÄ²ÎÊýÈçÏÂ: ÄÜÁ¿E = 100 MeV, ³¤¶È$ {\xi }_{1}=1.57\mathrm{ }\mathrm{ }\mathrm{c}/{\omega }_{\mathrm{p}} $ , $ {\sigma }_{r\mathrm{e}}=1\mathrm{ }\mathrm{c}/{\omega }_{\mathrm{p}} $ , ÖÐÐÄÃܶÈ${n}_{\mathrm{b}\mathrm{e}\mathrm{m}}= $ $ 0.0056{n}_{0}$ , µç×ÓÊøµÄ¿Õ¼ä·Ö²¼±íÊöΪ${n}_{\mathrm{b}\mathrm{e}}\left(r, \xi \right)= $ $ \dfrac{{n}_{\mathrm{b}\mathrm{e}\mathrm{m}}}{2}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{{r}^{2}}{{\sigma }_{r\mathrm{e}}^{2}}\right)\left[1-\cos \left(2\mathrm{\pi }\xi /{\xi }_{1}\right)\right]$ , ¼´×ÝÏò·Ö²¼ÎªÓàÏÒº¯Êý°ë²¨ÐÍ, ºáÏò·Ö²¼Îª¸ß˹·Ö²¼.ͼ9(a) ºÍͼ9(b) ·Ö±ð¶Ô±ÈÁË$\xi =500 c/{\omega }_{\mathrm{p}} $ , $\xi = $ $ 750c/{\omega }_{\mathrm{p}}$ Á½¸ö×ø±êÏÂÎÞÖÖ×ÓⲨµÄ×Ôµ÷ÖÆÓëÓÐÖÖ×ÓⲨµ÷ÖÆÇé¿öÏÂÖÊ×ÓÊøÎ²²¨ÏàËÙ¶ÈËæÊ±¼äµÄ±ä»¯Çé¿ö. ¿ÉÒÔÃ÷ÏԵؿ´³öÓеç×ÓÊøµÄÇé¿öÏÂ, ⲨÏàËÙ¶ÈÓÈÆäÊÇÔÚÄ£ÄâºóÆÚÓÐÁËÃ÷ÏÔµÄÔö¼Ó. ÁíÍâ, ÓÉÓÚµç×ÓÊøµÄµçºÉÁ¿±È½ÏµÍ, ÔÚµÈÀë×ÓÌåÖеÄÄÜÁ¿Ë¥¼õËٶȱȲ»ÉÏͼ8 ÖÐ100 MeVËù¶ÔÓ¦µÄÄ£Äâ, ¹Ê¶øÍ¼9 Öв¢Ã»ÓÐͼ8 ºóÆÚ³öÏֵIJ»Îȶ¨ÏàËÙ¶È, ÕâÓëÉÏÒ»½ÚËù²ûÊöµÄ½áÂÛÊÇÒ»ÖµÄ. ×ÛÉÏËùÊö, ¼´±ã¸Ä±äÁËÖÊ×ÓÊøµÄ·Ö²¼, µç×ÓÊøÒÀÈ»¿ÉÒÔÌá¸ßƽ¾ùÏàËÙ¶È, ֮ǰËùµÃµ½µÄ½áÂÛÔڸıäÖÊ×ÓÊø·Ö²¼µÄÇé¿öÏÂÒ²ÒÀÈ»ÊÊÓÃ. ͼ 9 (a) ÔÚ$ \xi =500 c/{\omega }_{\mathrm{p}} $ ´¦Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯; (b) ÔÚ$ \xi =750 c/{\omega }_{\mathrm{p}} $ ´¦Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæÊ±¼ä±ä»¯ Figure9. (a) Phase velocity as a function of time at $ \xi =500 c/{\omega }_{\mathrm{p}} $ ; (b) phase velocity at $ \xi =750 c/{\omega }_{\mathrm{p}} $ . 5.½á¡¡ÂÛ ±¾ÎÄͨ¹ýÀíÂÛ·ÖÎö²¢ÀûÓöþάÖù×ø±êÄ£ÄâÈí¼þLCODEÑо¿Á˵ç×ÓÊøµÄÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨ÏàËٶȵÄÓ°Ïì. ·¢ÏÖµç×ÓÊø¿ÉÒÔÌáÉýÕû¸öÖÊ×ÓÊø×Ôµ÷ÖÆµÄÔö³¤ÂÊ, ÌáÉýⲨÏàËÙ¶È, ²¢ÇÒµç×ÓÊøµÄµçºÉÁ¿Ô½¸ß, ÌáÉýµÄЧ¹ûԽͻ³ö. ÁíÍâÑо¿»¹·¢ÏÖ, µç×ÓÊøÔÚÖÊ×ÓÊø×Ôµ÷ÖÆ¹ý³ÌµÄǰÆÚ»áͨ¹ý×Ô¾Û½¹µÄЧӦÌáÉýÏàËÙ¶È. µç×ÓÊøµÄµçºÉÁ¿Ô½¸ß¡¢ÄÜÁ¿Ô½µÍÔòÏàËÙ¶ÈÌáÉýÓú·¢Ã÷ÏÔ; ͨ¹ýѡȡºÏÊʵIJÎÊý, ÉõÖÁ¿ÉÒÔ»ñµÃÒ»¸ö³¬¹âËÙµÄÏàËÙ¶È. ´ËÍâ, ±¾ÎÄ»¹Ì½ÌÖÁËÖîÈçµç×ÓÊøÄÜÁ¿ºÄÉ¢¡¢Ïà¶ÔÂÛЧӦÒýÆðµÄµÈÀë×ÓÌ岨³¤À³¤µÈЧӦ¶ÔÏàËٶȵÄÓ°Ïì, ²¢ÔÚ×îºó±È½ÏÁ˲»Í¬ÖÊ×ÓÊø·Ö²¼Çé¿öÏÂÏàËٶȵÄÑÝ»¯, ÑéÖ¤ÁËÉÏÊöµç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆÎ²²¨µÄÏàËÙ¶ÈÓ°ÏìµÄÏà¹Ø½áÂÛÊÊÓÃÓÚ²»Í¬ÖÊ×ÓÊøÃܶȷֲ¼. ±¾Ñо¿¶ÔÓÚδÀ´µÄµç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆÎ²²¨¼ÓËÙ·½°¸¾ßÓÐÒ»¶¨µÄ²Î¿¼¼ÛÖµ. ×÷Õ߸Ðл¶íÂÞ˹BudkerºËÎïÀíÑо¿ËùKonstantin Lotov½ÌÊÚÔÊÐíʹÓÃËû¿ª·¢µÄLCODE³ÌÐò, ²¢ÌṩÏà¹Ø°ïÖú.