ɾ³ý»ò¸üÐÂÐÅÏ¢£¬ÇëÓʼþÖÁfreekaoyan#163.com(#»»³É@)

µç×ÓÊøⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆⲨÏàËÙ¶ÈÓ°ÏìµÄÀíÂÛºÍÊýֵģÄâÑо¿

±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ/2021-12-29

ÕªÒª:¸ßÄÜÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖÐͨ¹ý×Ôµ÷ÖƲ»Îȶ¨¼¤·¢Î²²¨µÄÑо¿ÔÚ¹ýÈ¥µÄÊ®ÄêÀïÓÐÁ˳¤×ãµÄ·¢Õ¹, ÔÚÅ·ÖÞºË×ÓÑо¿ÖÐÐÄ(CERN)ÈËÃÇÒѾ­ÔÚÏà¹ØAWAKEʵÑéÖÐÀûÓÃÕâÖÖⲨ¼ÓËÙµç×Ó, ²¢»ñµÃÁË×î¸ßÄÜÁ¿Ô¼2 GeVµÄµç×ÓÊø. Õë¶Ô¸ßÄÜÁ£×Ó¼ÓËÙÓ¦ÓÃÐèÇó, ½ü¼¸ÄêÈËÃÇÓÖ½øÒ»²½Ìá³öÁËÀûÓõç×ÓÊøÖÖ×ÓⲨ¿ØÖÆÖÊ×ÓÊø×Ôµ÷Öƹý³ÌµÄ·½°¸, ÓÃÓÚÌáÉýⲨµÄÇ¿¶ÈÓëÎȶ¨ÐÔ. ±¾ÎÄÑо¿Á˵ç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆⲨÏàËٶȵÄÓ°Ïì, ×ÅÖØÌÖÂÛÁ˵¼ÖÂⲨÏàËٶȸıäµÄ¶àÖÖÎïÀí»úÀí¼°µç×ÓÊøËùÆðµ½µÄ×÷ÓÃ. ͨ¹ýÀíÂÛ·ÖÎöºÍ¶þάÁ£×ÓÄ£ÄâÑо¿·¢ÏÖ, µç×ÓÊøµÄÒýÈë¿ÉÒÔÌáÉýÖÊ×ÓÊø×Ôµ÷ÖÆⲨµÄÔö³¤ÂʺÍⲨµÄÏàËÙ¶È, ÇÒµç×ÓÊøµÄµçºÉÃܶÈÔ½¸ßÆäЧ¹ûÓúÃ÷ÏÔ. ±¾ÎÄ»¹Ì½ÌÖÁ˵ç×ÓÊøÄÜÁ¿ºÍÖÊ×ÓÊøµÄ×ÝÏòÃܶȷֲ¼¶ÔÏàËٶȱ仯µÄÓ°Ïì.
¹Ø¼ü´Ê: µÈÀë×ÓÌåⲨ¼ÓËÙ/
ÖÊ×ÓÊø×Ôµ÷ÖÆ/
ⲨÏàËÙ¶È/
µç×ÓÊøÖÖ×ÓⲨ

English Abstract


--> --> -->
µÈÀë×ÓÌåⲨ¼ÓËÙ¸ÅÄî[1,2]×Ô´ÓÉÏÊÀ¼Í70Äê´úÄ©±»Ìá³öÒÔÀ´ÒѾ­È¡µÃÁ˳¤×ãµÄ·¢Õ¹, Ëüͨ¹ý¸ßÇ¿¶ÈµÄ¼¤¹âÂö³å»òÕ߸ßÄÜ´øµçÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖм¤·¢³öÒ»¸ö´óÕñ·ùÇÒ¾ßÓÐÏà¶ÔÂÛÏàËٶȵĵç×ÓµÈÀë×ÓÌ岨À´¼ÓËÙµç×Ó[3-5]. µÈÀë×ÓÌåⲨµÄ³¡Ç¿½Ó½üÓÚËùνµÄµÈÀë×ÓÌ岨ÆÆÁÑ·ù¶È$ {E}_{0}={m}_{\mathrm{e}}{\omega }_{\mathrm{p}}c/e $, ÆäÖÐ$ {\omega }_{\mathrm{p}}=\sqrt{4\mathrm{\pi }{n}_{0}{e}^{2}/{m}_{\mathrm{e}}} $ΪµÈÀë×ÓÌåÕñµ´ÆµÂÊ, $ {n}_{0} $ΪµÈÀë×ÓÌåµç×ÓÃܶÈ, $ e $Ϊµç×ÓµçºÉ, $ {m}_{\mathrm{e}} $Ϊµç×ÓÖÊÁ¿, $ c $Ϊ¹âËÙ. ¸Ã³¡Ç¿±È´«Í³¼ÓËÙÆ÷²úÉúµÄ¼ÓËٵ糡¸ß³öºÃ¼¸¸öÊýÁ¿¼¶[6], ʹµÃµÈÀë×ÓÌåⲨ¼ÓËÙÒѾ­³ÉΪδÀ´×îÓÐÇ°¾°µÄÐÂÐͼÓËÙ·½Ê½Ö®Ò», ÎüÒýÁËÖÚ¶à¹úÄÚÍâÑо¿ÕßµÄÄ¿¹â[7-9].
ÔÚÖÚ¶àµÈÀë×ÓÌåⲨ¼ÓËٵķ½°¸ÖÐ, ÖÊ×ÓÊøⲨ¼ÓËÙ×îÔçÓÉCaldwellµÈ[10]ÔÚ2009ÄêÌá³ö, ËüµÄ»úÖÆÓëµç×ÓÊøÇý¶¯Î²²¨¼ÓËÙ¼«ÎªÏàËÆ, ¶¼ÊÇͨ¹ýÒ»ÊøºÜ¶ÌµÄ´øµçÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖм¤·¢Î²²¨. ÓÉÓÚÖÊ×ÓµÄÖÊÁ¿Ô¶Ô¶´óÓÚµç×Ó, ×÷ΪⲨÇý¶¯Ô´µÄÖÊ×ÓÊøËùЯ´øµÄÄÜÁ¿Ò²Ô¶Ô¶µØ³¬¹ýÁ˼¤¹âºÍµç×ÓÊøµÄÄÜÁ¿, ÕâʹµÃÖÊ×ÓÊøÇý¶¯µÄⲨ¼ÓËÙ³ÉΪĿǰ×îÓпÉÄÜͨ¹ýµ¥¼¶¼ÓËÙ°ÑÇá×ÓÄÜÁ¿¼ÓËÙµ½TeVÁ¿¼¶µÄ¼ÓËÙ·½Ê½[11]. È»¶øÖ»Óг¤¶È½Ó½üÓÚµÈÀë×ÓÌåµÄ²¨³¤$ {\lambda }_{\mathrm{p}}=c/{\omega }_{\mathrm{p}} $µÄÖÊ×ÓÊø²ÅÄÜÔÚµÈÀë×ÓÌåÖвúÉú½Ó½üÓÚ²¨ÆƵĵ糡ǿ¶È, ²¢ÇÒÏÖÓеļ¼ÊõÊÖ¶ÎȴûÓа취»ñµÃÈç´ËÖ®¶ÌµÄ¸ßÄÜÖÊ×ÓÊø. ÔÚ2010ÄêKumarµÈ[12]Ìá³öÁËͨ¹ý³¤ÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖÐͨ¹ý×Ôµ÷ÖƲ»Îȶ¨ (self-modulation instability) À´¼¤·¢µÈÀë×ÓÌåⲨµÄ¸ÅÄî. µ±Ò»Êø³¤ÖÊ×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥Ê±, ÖÊ×ÓÊø±¾Éí²úÉúµÄÖÜÆÚÐÔºáÏòµ÷ÖÆ»áʹµÃ³¤ÖÊ×ÓÊø×ÝÏò½á¹¹·¢ÉúÑÝ»¯, ´Ó¶ø²úÉúµÈÀë×ÓÌ岨µÄ½Ø¶ÏЧӦ, ʹµÃÖÊ×ÓÊøÑݱä³ÉÒ»³¤´®ÓëµÈÀë×ÓÌ岨³¤ÏàÆ¥ÅäµÄ¶ÌÖÊ×ÓÊø´®. ÓÉ´Ë¿ÉÒÔ¼¤·¢³öÒ»¸ö·Ç³£Ç¿µÄµç³¡, ÓÃÀ´¼ÓËÙÍⲿעÈëµÄµç×ÓÊø.
Õâ¸öÀíÂÛÒÑÓÚ2018ÄêÔÚÅ·ÖÞºË×ÓÖÐÐÄ(CERN)±»AWAKEʵÑéºÏ×÷×é֤ʵ[13,14]. ËûÃÇÔÚʵÑéÖÐʹÓÃÁËÒ»Êø³¤6 cm¡¢ÖÐÐÄÄÜÁ¿400 GeVµÄÖÊ×ÓÊø. ÔÚÖÊ×ÓÊøͨ¹ý³¤¶È10 mµÄµÈÀë×ÓÌå¹ÜµÀÖ®ºó, ¸ßËÙÉãÏñ»úÅÄÉãÏÂÁËÖÊ×ÓÊø×Ôµ÷ÖÆÖ®ºó·ÖÁѳÉÒ»³¤´®¶ÌÖÊ×ÓÊøµÄͼÏñ. ÔÚ¸ÃʵÑéÖÐ, ÖÊ×ÓÊø´®¼¤·¢µÄµÈÀë×ÓÌåⲨ½«Íâ×¢ÈëµÄÄÜÁ¿Ô¼18 MeVµÄµç×ÓÊø¼ÓËÙÖÁ½ü2 GeVµÄ×î¸ßÄÜÁ¿[15]. µ«ÊÇ, ÃÀÖв»×ãµÄÊÇ, ÖÊ×ÓÊø×Ôµ÷ÖƵĹý³Ì»á³ÖÐø²»¶ÏµØ·¢Õ¹, ÌرðÊÇÓÉÓÚÖÊ×ÓÊøÍ·²¿µÄ³ÖÐøÀ©É¢ºÍºóÍË, ×îÖÕµ¼ÖÂÁËÕû¸öⲨÏàλµÄµ¹ÍË, ´Ó¶øÆÆ»µÁËÖÊ×ÓÊø´®µÄЭͬÐÔ, Ôì³ÉÁ˺óÆÚⲨµç³¡Ç¿¶ÈµÄϽµ, ͬʱҲʹµÃⲨµÄÏàËÙ¶ÈϽµ, ²»ÀûÓÚ¼ÓËÙ´øµçÁ£×Ó. ÕâÒ»ÏÖÏóÒѾ­±»ÀíÂÛºÍʵÑéËùÖ¤Ã÷[13-16]. Ïà¹ØÖÊ×ÓÊø×Ôµ÷ÖƵÄÀíÂÛÒѾ­±»ºÜ¶àÎÄÕÂËù²ûÊö[17-21], ÕâЩÎÄÕ½ÒʾÁË×Ôµ÷ÖÆÕâÒ»²»Îȶ¨ÐÔ¹ý³ÌµÄÔö³¤ÂÊ¡¢ÏàËٶȵı仯µÈ, ¿ÉÒÔ˵ÔÚÏßÐÔ»¯½×¶Î, ¸ÃÀíÂÛÒѾ­·¢Õ¹µÃÏ൱³ÉÊì.
½üÄêÀ´, Ëæ×ÅÈËÃǶÔ×Ôµ÷ÖÆÕâÒ»¹ý³ÌÑо¿µÄÉîÈë, ÀûÓÃÖÖ×ÓµÈÀë×ÓÌåⲨ¿ØÖÆ×Ôµ÷ÖÆ(seeding-self-modulation)µÄÏë·¨Öð½¥³öÏÖÔÚÁËÈËÃǵÄÊÓÏßÖ®ÖÐ. Ëüͨ¹ýÔÚÖÊ×ÓÊøµÄÇ°·½Ìí¼ÓÒ»¸ö¼¤¹âÊø»òÕ߶̵ç×ÓÊø, ÒÀ¿¿¼¤¹âÊø[18]»òÕ߶̵ç×ÓÊø[22]²úÉúµÄⲨ×÷ΪÖÖ×ÓÀ´µ÷ÖÆÖÊ×ÓÊø, ´Ó¶øʹµÃÕû¸ö×Ôµ÷ÖƵĹý³Ì±äµÃ¿É¿Ø. 2020ÄêLotovºÍMinakov[23]ͨ¹ýÀíÂÛÑо¿ÓëÊýֵģÄâ, ·¢ÏÖͨ¹ý°Ñ¶Ìµç×ÓÊøÖÖ×ÓⲨ×Ôµ÷ÖÆÓëµÈÀë×ÓÌåÃܶÈÌݶÈÏà½áºÏ, ¿ÉÒÔ»ñµÃÒ»¸öÏà¶ÔÎȶ¨¡¢µç³¡Ç¿¶ÈÓÖ±£³ÖÔڽϸßË®×¼µÄⲨ.
×ÛÉÏËùÊö, ÀûÓÃÖÖ×ÓµÈÀë×ÓÌ岨À´¿ØÖÆÖÊ×ÓÊøµ÷Öƹý³Ì¾ßÓо޴óµÄDZÁ¦, Ò²ÊÇÄ¿Ç°AWAKEÏîÄ¿µÄÖ÷ÒªÑо¿·½ÏòÖ®Ò». Õâ·½ÃæµÄÑо¿²Å½øÈëÈËÃǵÄÊÓÏß, ¶ÔÓÚÆä»úÖÆÒÔ¼°µç×ÓÊø¶ÔÖÊ×ÓÊøÇý¶¯µÄⲨÏàËٶȵÄÓ°ÏìÄ¿Ç°ÉÐûÓб»ÍêÈ«ÈÏÖª. ÓÉÓÚµç×ÓÔÚⲨÖмÓËÙÄÜÁ¿×îÖÕÈ¡¾öÓÚⲨµÄÏàËÙ¶È, Òò´ËÈçºÎ¿ØÖÆⲨÏàËٶȡ¢²¢¾¡¿ÉÄÜÌá¸ßÕâ¸öÏàËÙ¶ÈÖÁ·Ç³£½Ó½üÕæ¿ÕÖйâËÙÊǸöÖØÒªÑо¿¿ÎÌâ.
±¾ÎÄÖ÷ÒªÑо¿ÒÔµç×ÓÊøÇý¶¯µÈÀë×ÓÌåⲨ×÷ΪÖÖ×ÓµÄÖÊ×ÓÊø×Ôµ÷Öƹý³Ì, ¼°Æä²úÉúµÈÀë×ÓÌåⲨµÄÏàËٶȱ仯, ²¢¸ù¾ÝÄ£Äâ½á¹û̽ÌÖÖÊ×ÓÊøⲨÏàËÙ¶ÈÓëµç×ÓÊøµÄ¹ØÁª. ͨ¹ý¶þάÖù×ø±êÄ£ÄâÈí¼þLCODE[24], Ñо¿²»Í¬µçºÉÃܶȡ¢ÄÜÁ¿µÄ¶Ìµç×ÓÊø¶ÔÖÊ×ÓÊø×Ôµ÷Öƹý³ÌµÄÓ°Ïì, ÌرðÊÇÖÊ×ÓÊøⲨÏàËٶȵı仯, ͬʱ»¹²ûÊöÁ˶̵ç×ÓÊøÔÚµÈÀë×ÓÌåÖÐ×ÔÉíµÄÑÝ»¯¶Ô¸ÃÏàËٶȵÄÓ°Ïì, ΪÖÊ×ÓÊøÇý¶¯Î²²¨¼ÓËÙµÄÏà¹ØÑо¿Ìṩ²Î¿¼.
Ê×ÏȽéÉܹØÓÚÖÖ×Ó×Ôµ÷ÖƵÄÀíÂÛÄ£ÐÍ. Ïà¹ØµÄÄ£ÐÍÇ°ÈËÒѾ­ÓÐËùÑо¿[19-21], µ«ÊǺÍÏàÓ¦µÄÄ£Äâ½á¹û²¢²»Ò»ÖÂ, ¿É¼ûÏà¹ØµÄÀíÂÛ²¢²»ÍêÉÆ. ¶ø¹ØÓÚÎÞÖÖ×ÓÇé¿öϵÄÖÊ×ÓÊø×Ôµ÷ÖƵÄÀíÂÛÄ£ÐÍÔòÒѾ­·¢Õ¹µÃÏ൱Í걸. ÔÚÎÞÖÖ×Ó×Ôµ÷ÖƵĶþάÀíÂÛÄ£ÐÍÖÐ, Ò»Êø·Ç³£³¤µÄ¾ùÔÈÖÊ×ÓÊøÑØ×Å$ z $·½ÏòÒÔ$ {v}_{\mathrm{b}} $µÄËÙ¶ÈÔÚ¾ùÔȵÈÀë×ÓÌåÖд«Êä. ÓÉÓÚÖÊ×ÓÊøµÄÄÜÁ¿·Ç³£´ó, ¿ÉÒÔÖ±½ÓºöÂÔÖÊ×ÓÔÚ×ÝÏòµÄλÒÆ. ÄÇô, ¿ÉÒÔд³öËüµÄ°üÂç·½³Ì[21]:
$\begin{split}&\frac{{\mathrm{d}}^{2}{r}_{\mathrm{b}}}{\mathrm{d}{z}^{2}}-\frac{{\epsilon}_{\mathrm{n}}^{2}}{{r}_{\mathrm{b}}^{3}}=-\frac{4{k}_{\mathrm{b}}^{2}{r}_{\mathrm{b}0}^{2}{I}_{2}\left({k}_{\mathrm{p}}{r}_{\mathrm{b}}\right)}{\gamma {r}_{\mathrm{b}}}\\&~~\times\int _{\infty }^{\xi }\mathrm{d}{\xi }'\sin\left[{k}_{\mathrm{p}}\left(\xi -{\xi }'\right)\right]f\left({\xi }'\right)\frac{{K}_{1}\left({k}_{\mathrm{p}}{r}_{\mathrm{b}}\left({\xi }'\right)\right)}{{r}_{\mathrm{b}}\left({\xi }'\right)}\text{,}\end{split}$
·½³ÌÖÐ$ {\epsilon}_{\mathrm{n}} $ΪÖÊ×ÓÊøµÄ¹éÒ»»¯·¢Éä¶È, $ {r}_{\mathrm{b}} $ΪÖÊ×ÓÊø°ë¾¶, $ f\left(\xi \right) $ΪÖÊ×ÓÊøµÄ×ÝÏò·Ö²¼, $ t $Ϊʱ¼ä, $ \gamma $ΪÖÊ×ÓµÄÂåÂ××ÈÒò×Ó, $ {k}_{\mathrm{p}}={\omega }_{\mathrm{p}}/c=\sqrt{4\mathrm{\pi }{n}_{0}{e}^{2}/{m}_{\mathrm{e}}{c}^{2}} $ΪµÈÀë×ÓÌ岨Êý, $ {n}_{0} $ΪµÈÀë×ÓÌåµç×ÓÃܶÈ, ÆäÖÐ${k}_{\mathrm{b}}= $$ {\omega }_{\mathrm{b}}/c=\sqrt{4\mathrm{\pi }{n}_{\mathrm{b}}{e}^{2}/{m}_{\mathrm{p}}{c}^{2}}$, $ {n}_{\mathrm{b}} $ΪÖÊ×ÓÊøÃܶÈ, $ {m}_{\mathrm{p}} $ΪÖÊ×ÓÖÊÁ¿, ´«²¥×ø±ê±äÁ¿$ \xi ={v}_{\mathrm{b}}t-z\approx ct-z $, K1ºÍI2ÔòÊDZ´Èû¶ûº¯Êý. ·½³ÌµÄ×ó±ßµÚ¶þÏîÀ´×ÔÓÚÖÊ×ÓÊø·¢Éä¶Èµ¼ÖµĺáÏòÅòÕÍ, ¶øÓұߵÚÒ»ÏîÔòÀ´×ÔÓÚµÈÀë×ÓÌåºáÏòⲨ´øÀ´µÄÔ˶¯Ç÷ÊÆ.
ͨ¹ý¼ÙÉè$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $, ͬʱ¼Ù¶¨¾ßÓÐÒ»¶¨³¤¶ÈµÄ¾ùÔÈÖÊ×ÓÊø$ f\left(\xi \right)=1 $, ·½³Ì(1)¿ÉÒÔת±äΪ[21]
$\frac{{\mathrm{d}}^{2}{r}_{\mathrm{b}}}{\mathrm{d}{z}^{2}}-\frac{{\epsilon}_{\mathrm{n}}^{2}}{{r}_{\mathrm{b}}^{3}}=-\frac{{k}_{\mathrm{p}}{k}_{\mathrm{b}}^{2}}{2\gamma }{r}_{\mathrm{b}}\int _{\infty }^{\xi }\mathrm{d}{\xi }'\sin\left[{k}_{\mathrm{p}}\left(\xi -{\xi }'\right)\right]\frac{{r}_{\mathrm{b}0}^{2}}{{r}_{\mathrm{b}}^{2}}\text{,}$
ÆäÖз½³ÌµÄÓÒ±ßÊÇ$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $Çé¿öϵĶþάÁ£×ÓÊø²úÉúµÄºáÏòⲨ·Ö²¼. ¿ÉÒÔͨ¹ýËüÀ´ÒýÈëµç×ÓÊøµÄºáÏòⲨ. ÕâÀï¼ÙÉèµç×ÓÊøµÄ³¤¶ÈΪ$ {\xi }_{1} $, °ë¾¶µÈÓÚÖÊ×ÓÊøµÄ°ë¾¶(ͬÑù·ûºÏ$ {{k}_{\mathrm{p}}r}_{\mathrm{b}}\ll 1 $), ÃܶÈΪ$ N{n}_{\mathrm{b}} $, ¾ùÔÈ·Ö²¼ÔÚ0¡ª$ {\xi }_{1} $Ö®¼ä, ÕâÒâζ×ÅÔÚÄ£ÐÍÖÐ, ÖÊ×ÓÊø½ô¸úÔÚµç×ÓÊøµÄºó·½, Á½ÕßÖ®¼äµÄ¾àÀëΪ0. ÁíÍâÔڸ÷½³ÌÖÐ, ¼Ù¶¨µç×ÓÊøµÄ·Ö²¼²»Ëæʱ¼äÑÝ»¯. °Ñµç×ÓÊøµÄ·Ö²¼´úÈë·½³ÌÖ®ºó, ¾ÍµÃµ½ÁËÒ»¸öеİüÂç·½³Ì:
$\begin{split}&\frac{{\mathrm{d}}^{2}{r}_{\mathrm{b}}}{\mathrm{d}{z}^{2}}-\frac{{\epsilon}_{\mathrm{n}}^{2}}{{r}_{\mathrm{b}}^{3}}=-\frac{{k}_{\mathrm{p}}{k}_{\mathrm{b}}^{2}}{2\gamma }{r}_{\mathrm{b}}\int _{\infty }^{\xi }\mathrm{d}{\xi }'\sin\left[{k}_{\mathrm{p}}\left(\xi -{\xi }'\right)\right]\frac{{r}_{\mathrm{b}0}^{2}}{{r}_{\mathrm{b}}^{2}}\\& \qquad \qquad -2N\frac{{k}_{\mathrm{b}}^{2}}{2\gamma }{r}_{\mathrm{b}}\sin\left(\frac{2\xi -{\xi }_{1}}{2}\right)\sin\left(-{\xi }_{1}\right)\text{,}\\[-15pt]\end{split}$
¸Ã·½³Ì°üº¬ÁËÖÊ×ÓÊøÇ°·½µç×ÓÊøµÄ×ÝÏòⲨ·Ö²¼. ´Ó¸Ã·½³Ì¾Í¿ÉÒÔ¿´³ö, µç×ÓÊø²úÉúµÄºáÏòⲨ¾ÍÊǵç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆÓëÖÊ×ÓÊø×Ôµ÷Öƹý³ÌÖ®¼ä×î´óµÄ²»Í¬Ö®´¦. ½Ó×ŶԷ½³Ì(3)×öÏßÐÔ»¯´¦Àí[19], ¼ÙÉè$ {\mathrm{r}}_{\mathrm{b}}\approx {r}_{0}+{r}_{1} $, $ {r}_{0} $ΪÖÊ×ÓÊø×îÖÕƽºâ̬, $ {r}_{1} $ΪÖÊ×ÓÊø×Ôµ÷ÖÆÆÚ¼ä²úÉúµÄ°ë¾¶ÈŶ¯, ²¢ÇÒ$ {r}_{1}\ll {r}_{0} $, ÁíÍâ¼ÙÉè°üÂçÅòÕ͵ÄËٶȱȽϻºÂý${r}_{1}=\hat{r}\exp\left(\mathrm{i}\xi \right)+\mathrm{C}.\mathrm{C}$, ¼°$\left|{\partial }_{\xi }\hat{r}\right|\ll \hat{r}$. ÕâÑù¾ÍµÃµ½Á˼ò»¯ºó¹ØÓÚ$\hat{r}$µÄ·½³Ì:
$\left({\partial }_{z}^{2}+\mathrm{i}{k}_{\mathrm{\beta }}^{2}\left|\xi \right|\right)\hat{r}=2N{k}_{\mathrm{\beta }}^{2}\sin\left(\xi -\frac{{\xi }_{1}}{2}\right)\sin\left(\frac{{\xi }_{1}}{2}\right)\hat{r}\text{,}$
ÆäÖÐ$ {k}_{\mathrm{\beta }}^{2}={k}_{\mathrm{b}}^{2}/2\gamma $, ÁíÍâ¼ÙÉè·½³ÌµÄ³õʼÌõ¼þΪ$\hat{r}\left(z, \xi =0\right)=\mathrm{\delta }r\varTheta \left(z\right)$, $\hat{r}\left(z=0, \xi \right)=\mathrm{\delta }r$, ${\partial }_{z}\hat{r}(z=0, \xi ) $$ =0$[19], $ \varTheta \left(z\right) $Ϊ½×Ìݺ¯Êý, $ \mathrm{\delta }r $Ϊ¼ÙÉèÖÐÖÊ×ÓÊø°ë¾¶ÔÚ³õʼʱ¿ÌµÄ΢СÈŶ¯, ÓÚÊÇ¿ÉÒԵõ½·½³ÌµÄ½â:
${r}_{0}=\frac{{r}_{{b}_{0}}}{\left[1-2N\sin\left(\xi - {{\xi }_{1}}/{2}\right)\sin\left(-{\xi }_{1}\right)\right]{}^{\tfrac{1}{4}}}\text{,}\tag{5a}$
$\hat{r}=\mathrm{\delta }r\sum \frac{{\left[\mathrm{i}\right|\xi |+2N\sin\left(\xi - {{\xi }_{1}}/{2}\right)\sin\left(-{\xi }_{1}\right)]}^{n}{k}_{\mathrm{\beta }}^{2n}}{n!(2n!)}\text{.}\tag{5b}$
ÓÉ´Ë¿ÉÖª, µ±µç×ÓÊøÃܶȷdz£Ð¡Ê±, ÖÖ×Ó×Ôµ÷ÖƵÄÕû¸ö¹ý³Ì½«½Ó½üÓÚÖÊ×ÓÊø×Ôµ÷Öƹý³Ì.
ͨ¹ý°ÑÖÊ×ÓÊø°ë¾¶·Ö²¼´úÈëµÈÀë×ÓÌåⲨ¼ÆË㹫ʽ, ¾Í¿ÉÒÔ¼ÆËã³öµÈÀë×ÓÌåⲨµÄÇ¿¶È. ÔÙÒýÈëÎÄÏ×[19]ÖеÄÏàËٶȹ«Ê½
${v_{\rm{p}}} = \frac{1}{{{k_{\rm{p}}}}}\left| {\frac{\partial }{{\partial z}}{\rm{arctan}}\left( {\frac{{\tilde s{{\hat E}_z}}}{{\hat R{{\hat E}_z}}}} \right)} \right|{\rm{,}}$
ÆäÖÐ$\tilde {S}{\hat{E}}_{z}$Ϊµç³¡${\hat{E}}_{z}$µÄÐ鲿, $\hat{R}{\hat{E}}_{z}$Ϊµç³¡${\hat{E}}_{z}$µÄʵ²¿. ͨ¹ý(6)ʽ, Çó½âⲨµÄÏàËÙ¶È, ¾Í¿ÉÒԵõ½´æÔÚÖÖ×Óβ²¨Ê±ÖÊ×ÓÊøµ÷ÖÆⲨµÄÏàËÙ¶ÈËæʱ¼ä¼°¿Õ¼äµÄ·Ö²¼.
ͼ1Ϊͨ¹ýÉÏÊö¹«Ê½½øÐÐÊýÖµÇó½âµÃµ½µÄÏàËٶȷֲ¼. ͼ1ÖÐËùʹÓõĵÈÀë×ÓÌåÃܶÈΪ$ {n}_{0}= $$ 7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $, ÖÊ×ÓÊøÃܶÈΪ$ {n}_{\mathrm{b}}=0.0056{n}_{0} $, ¾ùÔÈ·Ö²¼, ¶øµç×ÓÊø³¤¶È$ {\xi }_{1}=1.57 c/{\omega }_{\mathrm{p}} $, ÃܶÈΪ¾ùÔÈ·Ö²¼. ͼÖзֱð¼ÆËãÁ˵ç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}}=0{n}_{\mathrm{b}} $, $ 0.25{n}_{\mathrm{b}} $, $ 0.5{n}_{\mathrm{b}} $, $ 1{n}_{\mathrm{b}} $, $ 10{n}_{\mathrm{b}} $, $ 20{n}_{\mathrm{b}} $ʱµÄÖÊ×ÓÊø×Ôµ÷Öƹý³ÌÔڦΠ= 100ʱµÄⲨÏàËٶȷֲ¼. Èçͼ1(a)Ëùʾ, ÔÚµç×ÓÊøÃܶȷdz£Ð¡µÄÇé¿öÏÂ, ÖÖ×Ó×Ôµ÷ÖÆⲨÏàËÙ¶ÈÓëÎÞµç×ÓÊøÇé¿öϵÄÖÊ×ÓÊø×Ôµ÷ÖƼ¸ºõÒ»ÖÂ, ÏàËٶȽö½öÓÐ׿«Æäϸ΢µÄ²î¾à. ¶ø´Óͼ1(b)Ôò¿ÉÒÔ¿´µ½, ÔÚµç×ÓÊøÃܶȽϴóʱ, Õû¸ö×Ôµ÷Öƹý³ÌÖеÄⲨÏàËÙ¶ÈËæ×ŵç×ÓÊøµÄÃܶÈÔö´óÓÐ×ÅÃ÷ÏÔµÄÌá¸ß. ²¢ÇÒÏàËٶȵÄ×îСֵҲËæ֮΢ÈõµØÏò×óÒƶ¯, ÕâÒ²±íʾÕû¸ö×Ôµ÷Öƹý³ÌËæ×ŵç×ÓÊøÃܶȵÄÔö¼Ó¶ø¼Ó¿ì, µç×ÓÊø¾ßÓÐÌá¸ß×Ôµ÷ÖÆÔö³¤ÂʵÄÌØÐÔ.
ͼ 1 ÔÚ$ \xi =100 c/{\omega }_{\mathrm{p}} $´¦Î²²¨ÏàËÙ¶ÈËæʱ¼ä±ä»¯¡¡(a) µç×ÓÊøÃܶȽϵÍʱ; (b) µç×ÓÊøÃܶȽϴóʱ
Figure1. Change of the phase velocity with time at $ \xi =100 c/{\omega }_{\mathrm{p}} $: (a) Low electron beam density; (b) high electron density.

ÉÏÊöµÄ¼ÆËãʹÓÃÁËÒ»¸ö¼ÙÉè, ÓÉÓÚ$ {r}_{0} $±ØÈ»ÊǸö²»Îª¸ºµÄʵÊý, µ±$1-2 N\sin\left(\xi - {{\xi }_{1}}/{2}\right)\sin\left(-{\xi }_{1}\right)$Ϊһ¸ö¸ºÊýʱ, Ö±½Ó¼Ù¶¨$ 1/{r}_{0}=0 $, ÁíÍâ, ÔÚNµÄÈ¡Öµ·Ç³£´óµÄÇé¿öÏÂ, ±ÈÈçN = 40, ´Ëʱµç×ÓÊø²úÉúµÄµç³¡ÒѾ­´¦ÓÚ·ÇÏßÐÔÇ¿¶È, ¶ø±¾ÀíÂÛÖ»ÊÊÓÃÓÚÏßÐԽ׶Î, ËùÒÔÉÏÊöµÄÀíÂÛÆäʵ¶ÔÓÚNÓÐÒ»¸öÊÊÓ÷¶Î§.
½Ó×Åͨ¹ýLCODE³ÌÐòÄ£ÄâÀíÏë״̬ÏÂ, Ïàͬ·Ö²¼¡¢²»Í¬µçºÉÁ¿µÄµç×ÓÊøËùÒý·¢µÄÖÖ×Ó×Ôµ÷ÖÆÖв»Í¬Î»Öᢲ»Í¬Ê±¿Ì×ÝÏòⲨ¼«ÖµµÄλÖñ仯. LCODEÊÇÓÉLotov¿ª·¢µÄ¶þάÖù×ø±êÄ£ÄâÈí¼þ[25], רÃÅÓÃÓÚÄ£ÄâÖù¶Ô³ÆÁ£×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥ËùÒýÆðµÄⲨ¼¤·¢ºÍµç×Ó¼ÓËÙ¹ý³Ì. ÔÚÄ£ÄâÖÐ, Ñ¡È¡µÄÄ£Äâ´°¿Ú³¤¶ÈΪ${600\; c/\omega }_{\mathrm{p}} $, µÈÀë×ÓÌåµÄÃܶÈΪ$ {n}_{0}=7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $ÇÒ¾ùÔÈ·Ö²¼, ÖÊ×ÓÊø³¤¶È$L= $$ 1500\; c/\omega _{\mathrm{p}}$(~3 cm), °ë¾¶$ {{r}_{\mathrm{b}}=1 c/\omega }_{\mathrm{p}} $(~200 ¦Ìm), ÖÐ ÐÄÄÜÁ¿$ {E}_{\mathrm{b}}=400\;\mathrm{G}\mathrm{e}\mathrm{V} $, ÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}}=0.0056\;{n}_{0} $, ×ÝÏòÃܶÈΪ¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼. ËùʹÓõĵç×ÓÊøÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}\mathrm{e}} $, ×ÝÏò¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼, µç×ÓÊø³¤¶È${{\xi }_{1}=\dfrac{\mathrm{\pi }}{2} c/}\omega _{\mathrm{p}}$, °ë¾¶$ {{r}_{\mathrm{b}\mathrm{e}}=1\; c/\omega }_{\mathrm{p}} $, ½ô¸úÔÚÖÊ×ÓÊøºó·½, Ë«·½Ö®¼äûÓмä¸ô. ÕâÀïÏÈ¿¼ÂÇÒ»¸öÀíÏëÇé¿ö, °Ñµç×ÓµÄÄÜÁ¿ÉèÖÃΪ${E}_{\mathrm{b}\mathrm{e}}= $$ {10}^{15}\;\mathrm{G}\mathrm{e}\mathrm{V}$, ÔÚÄÜÁ¿Èç´Ë¸ßµÄÇé¿öÏÂ, µç×ӵķֲ¼²»»áËæʱ¼äÑÝ»¯, Èç´Ë¾Í¿ÉÒÔÓëÉÏÊöµÄÀíÂÛ½øÐбȽÏ.
ͼ2(b)¡¢Í¼2(d)ºÍͼ2(f)·Ö±ð¸ø³öÁËÔÚÉÏÊöÌõ¼þϸıäµç×ÓÊøµÄÖÐÐÄÃܶÈËùÄ£Äâ³öµÄÖÊ×ÓÊø×Ôµ÷ÖÆⲨÏàËÙ¶ÈÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ¶øͼ2(a)¡¢Í¼2(c)ºÍͼ2(e)¸ø³öÁËÉÏÊöÌõ¼þÏÂÖÊ×ÓÊø×Ôµ÷ÖÆⲨµç³¡×î´óÖµÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͨ¹ý¶Ô±ÈÕâЩͼÏñ¿ÉÒÔ·¢ÏÖ, Ëæ×ŵç×ÓÊøÖÐÐÄÃܶȵÄÔö¼Ó, µç³¡×î´óÖµ·åÖµ³öÏÖµÄʱ¼äÔÚÕû¸ö×Ôµ÷ÖƵĹý³ÌÖÐÔ½À´Ô½Ôç(´ÓÎÞµç×ÓÊøµÄ´óÔ¼$20000c/{\omega }_{\mathrm{p}}$µ½$ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ʱµÄ´óÔ¼$10000c/{\omega }_{\mathrm{p}}$), Ïà¶ÔÓ¦µÄⲨÏàËٶȱ仯½á¹¹Ò²ÓÐ×ÅͬÑùµÄ±ä»¯, Óɴ˿ɼû, µç×ÓÊøµÄÒýÈë¿ÉÒÔÌá¸ß×Ôµ÷ÖƵÄÔö³¤ÂÊ, ѹËõÕû¸ö×Ôµ÷Öƹý³Ì´Ó³õʼµ½±¥ºÍËùÐèµÄʱ¼ä, ²¢ÇÒËæ×ŵç×ÓÊøµÄµçºÉÁ¿µÄÔö¼Ó, Õû¸ö¼ÓËٵij̶ÈÓú·¢Ã÷ÏÔ.
ͼ 2 µç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆÄ£Äâ½á¹û¡¡(a) ÎÞµç×ÓÊøʱµÄ×î´óµç³¡·Ö²¼; (b) ÎÞµç×ÓÊøʱµÄÏàËٶȷֲ¼; (c) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 1{n}_{\mathrm{b}} $ʱµÄ×î´óµç³¡·Ö²¼; (b) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 1{n}_{\mathrm{b}} $ʱµÄÏàËٶȷֲ¼; (e) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 10{n}_{\mathrm{b}} $ʱµÄ×î´óµç³¡·Ö²¼; (f) µç×ÓÊøÖÐÐÄÃܶÈΪ$ 10{n}_{\mathrm{b}} $ʱµÄÏàËٶȷֲ¼
Figure2. Results of the simulation: (a) Distribution of Emax when no seeding; (b) distribution of phase velocity when no seeding; (c) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (d) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=1{n}_{\mathrm{b}} $; (e) distribution of Emax when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $; (f) distribution of phase velocity when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

ͼ3(a)¸ø³öÁËÔÚ²»Í¬µç×ÓÊøÌõ¼þÏÂⲨµÄ·åÖµÏàλ±ä»¯Çé¿ö. ͨ¹ý¶Ô±Èͼ3(a)Öеĸ÷¸öÇúÏßµÄתÕÛµãλÖÃ, ¿ÉÒÔ·¢ÏÖËùÓеÄÇúÏ߶¼ÓµÓÐÏàͬµÄ±ä»¯¹æÂÉ, ËüÃǵı仯Ç÷ÊÆÒ²ÊÇÏàͬµÄ, Ωһ²»Í¬µÄÊÇÏàËٶȹյãµÄλÖúÍÏàËٶȵĴóС. ͼ3(b)ºÍͼ3(c)Ôò¸ø³öÁË($\xi =100\; c/{\omega }_{\mathrm{p}} $Óë$\xi =300\; c/{\omega }_{\mathrm{p}} $´¦)²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $ϸ÷´¦Î²²¨ÏàËÙ¶ÈËæʱ¼äµÄ±ä»¯Çé¿ö. ͨ¹ý¶Ô±Èͼ3(b)ºÍͼ3(c)²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $Çé¿öϵÄⲨÏàËٶȿÉÒÔ·¢ÏÖ, Ïà±ÈÓÚÎÞµç×ÓÊøµ÷ÖÆ, ÔÚÓеç×ÓÊøµ÷ÖƵÄÇé¿öÏÂ, ⲨÏàËÙ¶ÈÓÐËùÌáÉý, ¶øÇÒⲨµÄÔö³¤ÂÊÒ²Ã÷ÏÔÔö¼ÓÁË. ÖÊ×ÓÊø×Ôµ÷ÖƵÄÔö³¤ÂÊËæ×ŵç×ÓÊøÖÐÐÄÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $µÄÌá¸ß¶øÔö´ó, ´Ó¶øËõ¶ÌÁËÕû¸ö¹ý³ÌµÄʱ¼ä, ʹµÃⲨÏàËٶȵÄÑÝ»¯½øÕ¹¼Ó¿ì, ¸üÔçµØ´ïµ½Á˺óÆÚÏàËٶȽӽüÓÚ¹âËÙµÄÎȶ¨×´Ì¬. ÕâÓë֮ǰÀíÂÛÍƵ¼Ëù¸ø³öµÄ½áÂÛÍêÈ«Ò»ÖÂ, µ«ÊÇ¿ÉÒÔ·¢ÏÖÄ£Äâ½á¹ûÓëÀíÂÛÏà±ÈÔÚϸ½ÚÉϲ¢²»Ò»ÖÂ, ¿É¼ûÏëÒª»ñµÃÒ»¸ö¾«È·µÄ¹ØÓÚÏàËٶȵķֲ¼, ÊýֵģÄâÈÔÈ»ÊDz»¿É»òȱµÄ.
ͼ 3 (a) ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $Çé¿öÏÂⲨ·åÖµÏàλµÄ±ä»¯; (b) $ \xi =100\; c/{\omega }_{\mathrm{p}} $´¦²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $Ìõ¼þÏÂÄ£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯; (c) $ \xi =300\; c/{\omega }_{\mathrm{p}} $´¦²»Í¬$ {n}_{\mathrm{b}\mathrm{e}} $Ìõ¼þÏÂÄ£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯
Figure3. (a) Phase change of the wakefield peak with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $; (b) evolution of the phase velocity at $ \xi =100 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $; (c) evolution of the phase velocity at $ \xi =300 c/{\omega }_{\mathrm{p}} $ with different $ {n}_{\mathrm{b}\mathrm{e}} $.

ͼ4¸ø³öÁË×ÝÏò×ø±ê$0 c/{\omega }_{\mathrm{p}}¡ª600 c/{\omega }_{\mathrm{p}} $·¶Î§µÄÄ£Äâ´°¿ÚÄÚ×ÝÏòµç³¡×î´óÖµËæʱ¼äµÄ±ä»¯ÇúÏß, ´ÓͼÖеÄÇúÏ߱仯¿ÉÒÔÇåÎúµØ¿´³öËæ×ŵç×ÓÊøµÄµçºÉÁ¿ÌáÉý, Õû¸ö×Ôµ÷Öƹý³ÌµÄÔö³¤ÂÊ(µç³¡Ôö³¤ÂÊ)ÓÐÁËÃ÷ÏÔµÄÌáÉý, Ëù´ïµ½µÄ×î´óµç³¡Ò²ËæÖ®Ìá¸ß.
ͼ 4 ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $Çé¿öÏÂ×î´óµç³¡Ëæʱ¼äµÄ·Ö²¼
Figure4. Evolution of the maximum electric field with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $.

×ÛÉÏËùÊö, µç×ÓÊø¿ÉÒÔÌáÉý×Ôµ÷ÖƵÄÕû¸ö¹ý³ÌµÄ·¢Õ¹ËÙ¶È, ʹµÃÕû¸ö¹ý³ÌËùÐèµÄʱ¼äËõ¶Ì, ÕâҲʹµÃⲨÏàËٶȵı仯·ù¶È¼Ó¿ì, ¸üÔçµØ´ïµ½Á˺óÆÚÏàËٶȽӽüÓÚ¹âËÙµÄÎȶ¨×´Ì¬, ÓÐÀûÓÚºóÐøµÄµç×Ó¼ÓËÙ.
ÉÏÒ»½ÚÌÖÂÛÁËÀíÏë״̬ϵç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷Öƹý³ÌÖÐⲨÏàËٶȵÄÓ°Ïì, Ëù²ÉÓõĵç×ÓÊøÄÜÁ¿¼«¸ß, ʹÆäÔÚ´«Êä¹ý³ÌÖв»·¢Éú±ä»¯, ÊÇÒ»ÖÖ¼ò»¯ºóµÄÄ£ÐÍ. È»¶øÔÚʵ¼ÊµÄÇé¿öÖÐ, µç×ÓÊøµÄÄÜÁ¿²»¿ÉÄÜÈç´ËÖ®¸ß, ÏàÓ¦µØ, µç×ÓÊøÔÚµÈÀë×ÓÌå´«²¥µÄ¹ý³ÌÖÐ, ËüµÄÃܶȷֲ¼¡¢ÐÎ×´¡¢ÄÜÁ¿¶¼»á·¢Éú±ä»¯. ÕâЩ¸Ä±äÒ²»áÓ°ÏìⲨÏàËÙ¶È. ±¾½Ú¿¼ÂÇÁËÓÐÏÞÄÜÁ¿µç×ÓÊø´«Êä¹ý³ÌµÄÑÝ»¯¶ÔⲨÏàËٶȵÄÓ°Ïì.
Ê×ÏȽéÉÜÀíÂÛ¼ÆËã. µ±µç×ÓÊøÔÚµÈÀë×ÓÌåÖд«²¥Ê±, Ëü»áÊܵ½Ò»¸öÀ´×ÔµÈÀë×ÓÌåµÄ¾¶ÏòµÄ×÷ÓÃÁ¦ÒÔ¼°±¾ÉíµÄ¿âÂØÅųâÁ¦, ÆäºáÏò³ß¶ÈÂú×ã[17]

$\frac{{{\partial ^2}{r_{\rm{b}}}}}{{\partial {\tau ^2}}} = F(\xi ,\tau ) = \frac{{{\epsilon ^2}{c^2}}}{{{\gamma ^2}r_{\rm{b}}^3}} - \frac{{4\pi {k_{\rm{p}}}{n_{\rm{b}}}q_{\rm{b}}^2r_0^2}}{{{m_{\rm{b}}}\gamma }}\left\{ {\begin{aligned}&{{I_1}\left( {{k_{\rm{p}}}{r_{\rm{b}}}} \right)}, &{\int _0^\xi f\left( {\xi '} \right)\frac{{{K_1}\left( {{k_{\rm{p}}}{{r'}_{\rm{b}}}} \right)}}{{{{r'}_{\rm{b}}}}}\sin \left[ {{k_{\rm{p}}}\left( {\xi - \xi '} \right)} \right]{\rm{d}}\xi ',}~~&{{r_{\rm{b}}} < {{r'}_{\rm{b}}}}, \\&{{K_1}\left( {{k_{\rm{p}}}{r_{\rm{b}}}} \right)}, &{\int _0^\xi f\left( {\xi '} \right)\frac{{{I_1}\left( {{k_{\rm{p}}}{{r'}_{\rm{b}}}} \right)}}{{{{r'}_{\rm{b}}}}}\sin \left[ {{k_{\rm{p}}}\left( {\xi - \xi '} \right)} \right]{\rm{d}}\xi ',}~~&{{r_{\rm{b}}} > {{r'}_{\rm{b}}}},\end{aligned}} \right. $

ÆäÖÐ$ \tau =t $Ϊ´«²¥Ê±¼ä, I1ºÍK1ΪÐÞÕý±´Èû¶ûº¯Êý. ¼ÙÈçµç×ÓÊøµÄ·¢Éä¶È·Ç³£Ð¡, ÄÇôµç×ÓÊø½«Êܵ½Ò»¸ö¾¶ÏòѹËõµÄ×÷ÓÃÁ¦, ½øÈëÒ»¸ö×Ô¾Û½¹µÄ¹ý³Ì. ÔÚÕâ¸ö¹ý³ÌÖÐ, µç×ÓÊøµÄ°ë¾¶ÔÚ²»¶ÏµØ±äС, ÃܶÈÔÚ²»¶ÏµØ±ä¸ß, ´Ó¶øËüËù¼¤·¢µÄµç³¡Ò²ÔÚ²»Í£µØ±äÇ¿.
¼ÙÉèÁ£×ÓÊøµÄƽºâ̬Âú×ãÈçÏÂÌõ¼þ:
$ F(\xi,\tau )=0\text{.}$
²¢ÇÒÁ£×ÓÊøµÄÍ·²¿Âú×ãÕæ¿ÕÖз¢Éä¶È×ÔÓÉÅòÕÍ·½³Ì[17]
${r}_{\mathrm{b}}(\xi =0,\tau )={r}_{\mathrm{b}0}\left(\tau \right)={r}_{0}\sqrt{1+\frac{{\epsilon}^{2}{c}^{2}{\tau }^{2}}{{r}_{0}^{4}{\gamma }^{2}}}\text{.}$
¿ÉÒÔÀûÓ÷½³Ì(8)ºÍ·½³Ì(9)À´Çó½â³ö²»Í¬Ê±¿ÌÁ£×ÓÊøµÄƽºâ̬.
ͼ5(a)ºÍͼ5(b)¸ø³öÁËͨ¹ý(8)ʽºÍ(9)ʽ¼ÆËãµÄÒ»Êø³¤¶È${\xi }_{1}=\dfrac{\mathrm{\pi }}{2}c/{\omega }_{\mathrm{p}}$, °ë¾¶$ r=1 c/{\omega }_{\mathrm{p}} $, ·¢Éä¶È$ {\varepsilon }_{\mathrm{e}}=3\times {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m} $, ÄÜÁ¿Îª$ {E}_{\mathrm{b}\mathrm{e}} $µÄµç×ÓÊø¸Õ½øÈëµÈÀë×ÓÌåÖÐʱµÄƽºâ̬·Ö²¼. ¿ÉÒÔ¿´µ½µç×ÓÊøµÄ°ë¾¶, ÌرðÊǺó°ë²¿·Ö, ÓÐÒ»¸ö·Ç³£Ã÷ÏÔµÄѹËõ. Óɴ˿ɼû, ÔÚµÈÀë×ÓÌåÖд«²¥µÄ³õÆÚ, µç×ÓÊø½«¾­ÀúÒ»¸ö¼«ÆäÏÔÖøµÄѹËõ¹ý³Ì, ¶øѹËõºó²úÉúµÄ¸ßÃܶÈÒ²×ÔȻʹµÃÆä²úÉúµÄµç³¡ÓÐÁ˾޴óµÄÌáÉý, ´Ó¶ø¸Ä±äÁËÕû¸öⲨµÄ·Ö²¼.
ͼ 5 (a) µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}}=100\mathrm{M}\mathrm{e}\mathrm{V} $ʱ²»Í¬µç×ÓÊøÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}} $µÄƽºâ̬·Ö²¼; (b) $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $ʱ²»Í¬µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $µÄƽºâ̬·Ö²¼
Figure5. (a) Equilibrium configuration with different electron beam density $ {n}_{\mathrm{b}\mathrm{e}} $ when Ebe =100 MeV; (b) equilibrium configuration with different E when $ {n}_{\mathrm{b}\mathrm{e}}=10{n}_{\mathrm{b}} $.

ͼ6¸ø³öÁ˸ù¾Ý(7)ʽ¡ª(9)ʽ¼ÆËãËùµÃµÄ´æÔÚµç×ÓÊøÖÖ×Óʱ, ÖÊ×ÓÊø×Ôµ÷Öƹý³ÌÖеÄƽºâ̬Ãܶȷֲ¼. ¼ÆËã¹ý³ÌÖÐËùʹÓõIJÎÊýÈçÏÂ: µÈÀë×ÓÌåÃܶÈ$ {n}_{0} $, µç×ÓÊø³õʼÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}}=5{n}_{\mathrm{b}} $, ¾ùÔÈ·Ö²¼, µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, ·¢Éä¶È${\varepsilon }_{\mathrm{e}}=3\times $$ {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m}$, ³¤¶È$ {\xi }_{1}=1.57 c/{\omega }_{\mathrm{p}} $, ³õʼ°ë¾¶${r}_{\mathrm{b}\mathrm{e}}= $$ c/{\omega }_{\mathrm{p}}$; ÖÊ×ÓÊøÃܶÈ$ {n}_{\mathrm{b}}=0.0056{n}_{0} $, ×ÝÏòÎÞÏÞ³¤ÇÒ¾ùÔÈ·Ö²¼, ÖÐÐÄÄÜÁ¿Îª$ {E}_{\mathrm{b}} $ = 400 GeV, ·¢Éä¶È${\varepsilon }_{\mathrm{p}}= $$ 3\times {10}^{-4}~\mathrm{r}\mathrm{a}\mathrm{d}/\mathrm{m}\mathrm{m}$, ³õʼ°ë¾¶$ {r}_{\mathrm{b}}=c/{\omega }_{\mathrm{p}} $. ¸Ã¼ÆËãÖвÉÓÃÁËÁ½¸ö¼ÙÉè: 1)ºöÂÔµç×ÓÊø°ë¾¶·Ö²¼µÄ±ä»¯, ¼´$ {r}_{\mathrm{b}\mathrm{e}}\left(\xi, t\right)={r}_{\mathrm{b}\mathrm{e}}\left(t\right) $; 2)ºöÂÔµç×ÓÊøµÄÄÜÁ¿Ë¥¼õ. Ê×ÏÈ, ͨ¹ýÉÏÊö¼ÙÉèºÍ·½³Ì(7)ÇóµÃµç×ÓÊøÔÚijһʱ¿Ìϵİ뾶; Æä´Î, ½«µç×ÓÊø·Ö²¼ºÍÖÊ×ÓÊø²ÎÊý´úÈë·½³Ì(7), ´Ó¶øÇóµÃÔÚ¸Ãʱ¿Ìµç×ÓÊøºó·½µÄÖÊ×ÓÊøƽºâ̬Ãܶȷֲ¼, ×îºóÔÙͨ¹ý$n\left(\xi, t\right)= $$ {n}_{{\text{³õʼ}}}\left(\xi \right){q}_{\mathrm{b}}\dfrac{{\left({r}_{0}\right)}^{2}}{r{\left(\xi, t\right)}^{2}}$¼ÆËã³ö¸Ãʱ¿Ì¸÷¸ö×ÝÏòλÖõÄƽºâ̬Ãܶȷֲ¼. ͼ6ÖÐÑ¡È¡ÁËÈý¸öʱ¿Ì($ t=0 $, $ 410/{\omega }_{\mathrm{p}} $, $ 589/{\omega }_{\mathrm{p}} $), ·Ö±ð¶ÔÓ¦×ŵç×ÓÊø°ë¾¶${r}_{\mathrm{b}\mathrm{e}}= $$ c/{\omega }_{\mathrm{P}}$, $ 0.75 c/{\omega }_{\mathrm{P}} $, $ 0.5 c/{\omega }_{\mathrm{P}} $ÈýÖÖÇé¿ö, չʾÁ˵ç×ÓÊø(0ÖÁÐéÏß·¶Î§ÄÚ)ºó·½ÖÊ×ÓÊøµÄƽºâ̬Ãܶȷֲ¼µÄ±ä»¯Í¼Ïñ. ͨ¹ý¶Ô±È²»Í¬Ê±¿ÌµÄÖÊ×ÓÊøƽºâ̬Ãܶȷֲ¼, ¿ÉÒÔµÃÖªµ±µç×ÓÊø´¦ÓÚ±»Ñ¹Ëõ״̬ʱ(¿ÉÒÔ¿´µ½µç×ÓÊøµÄÃܶÈÔ½À´Ô½¸ß), ÖÊ×ÓÊøµÄ°üÂç»áÓÐÏòÇ°Ô˶¯µÄÇ÷ÊÆ, ÄÇôÏàÓ¦ÖÊ×ÓÊø²úÉúµÄⲨÏàλҲ»á´æÔÚÏòÇ°Ô˶¯µÄÇ÷ÊÆ, ÕâÒ²ÊÇÐγɳ¬¹âËÙⲨÏàËٶȵÄÖ÷ÒªÔ­Òò. ×ÜÖ®, µ±µç×ÓÊø´¦ÓÚ×Ô¾Û½¹×´Ì¬Ê±, ¿ÉÒԵõ½Ò»¸ö³¬¹âËÙµÄⲨÏàËÙ¶È.
ͼ 6 µç×ÓÊøѹËõÒýÆðµÄÖÊ×ÓÊøƽºâ̬±ä»¯, ¼´ÔÚÈý¸öʱ¿ÌµÄÖÊ×ÓÊøƽºâ̬·Ö²¼
Figure6. Equilibrium configuration of proton beam with a compressing electron beam.

½ÓÏÂÀ´µÄÄ£ÄâÊÇ»ùÓÚ֮ǰµÄµÈÀë×ÓÌåºÍÖÊ×ÓÊø²ÎÊý, ¿¼ÂÇÁËÏàͬµç×ÓÊø·Ö²¼ºÍµçºÉÁ¿, µ«²»Í¬ÄÜÁ¿µÄÄ£Äâ²ÎÊý¶ÔⲨÏàËٶȵÄÓ°Ïì. ÔÚÄ£ÄâÖÐ, µÈÀë×ÓÌåµÄÃܶÈΪ$ {n}_{0}=7\times {10}^{14}/\mathrm{c}{\mathrm{m}}^{3} $ÇÒ¾ùÔÈ·Ö²¼, ÖÊ×ÓÊøÖÐÐÄÄÜÁ¿$ {E}_{\mathrm{b}}=400~\mathrm{G}\mathrm{e}\mathrm{V} $, ³¤¶È$ {L=1500 c/\omega }_{\mathrm{p}} $(´óÔ¼3 cm), °ë¾¶$ {r=1 c/\omega }_{\mathrm{p}} $(´óÔ¼200 ¦Ìm), ÖÐÐÄÃܶÈΪ$ {n}_{\mathrm{b}\mathrm{m}}=0.0056{n}_{0} $, ×ÝÏò·Ö²¼Îª¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼. ËùʹÓõĵç×ÓÊø³¤¶È${{\xi }_{1}=\dfrac{\mathrm{\pi }}{2} c/\omega }_{\mathrm{p}}$, °ë¾¶$ {r=1 c/\omega }_{\mathrm{p}} $, µç×ÓÊøÖÐÐÄÃܶÈ$ {n}_{\mathrm{b}\mathrm{e}\mathrm{m}}=10{n}_{\mathrm{b}} $, ×ÝÏò·Ö²¼Îª¾ùÔÈ·Ö²¼, ºáÏòΪ¸ß˹·Ö²¼, µç×ÓÊøÖÐÐÄÄÜÁ¿×ܹ²Ñ¡È¡ÁËÈýÖÖ, ·Ö±ðÊÇ$ {E}_{\mathrm{b}\mathrm{e}}$ = 100 MeV, 500 MeV, 1 GeV.
ͼ7(a)¡ªÍ¼7(c)¸ø³öÁËÔÚÉÏÊöÌõ¼þϸıäµç×ÓÊøµÄÄÜÁ¿(100 MeV, 500 MeV, 1 GeV)ËùµÃµ½µÄÖÊ×ÓÊø×Ôµ÷ÖÆⲨµç³¡×î´óÖµÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͼ7(d)€¡ªÍ¼7(f)Ôò¸ø³öÁËÉÏÊöÌõ¼þÏÂÖÊ×ÓÊø×Ôµ÷ÖÆⲨÏàËÙ¶ÈÔÚʱ¼äÓë¿Õ¼äÉϵķֲ¼. ͼ8(a)ºÍͼ8(b)ÔòÊÇÌôÑ¡ÁË$\xi =100 c/{\omega }_{\mathrm{p}}$Óë$\xi = $$ 300 c/{\omega }_{\mathrm{p}}$µÄλÖÃ, ²»Í¬ÄÜÁ¿µÄµç×ÓÊøËùµÃµ½µÄⲨÏàËٶȽøÐбȽÏ. ¿ÉÒÔ·¢ÏÖ, ÔÚ×Ôµ÷ÖƳõʼµÄʱÆÚ, ³öÏÖÁËÏàËٶȴóÓÚ¹âËÙµÄÏÖÏó, ÕâÓë֮ǰÌáµ½µÄµç×ÓÊø×Ô¾Û½¹ÀíÂÛÏà·ûºÏ. ÄÜÁ¿Ô½¸ß, ¸ÃÏÖÏó¾ÍÔ½²»Ã÷ÏÔ. ÁíÍâͨ¹ý¶Ô±Èͼ7ºÍͼ8ÖеÄÊý¾Ý, ¿ÉÒÔ·¢ÏÖ¶Ô×Ô¾Û½¹Æ𵽹ؼü×÷ÓõÄÓÐÁ½¸ö²ÎÊý, ¼´µç×ÓÊøµÄÄÜÁ¿ºÍÃܶÈ. Èç¹ûµç×ÓÊøµÄÄÜÁ¿¦Ã¹ý¸ß, ÄÇôËüÊܵ½µÄ¾¶Ïò¼ÓËÙ¶ÈÒ²ËæÖ®¼õÈõ, Èçͼ8(a)ºÍͼ8(b)Ëùʾ, ×Ô¾Û½¹¶ÔÏàËٶȵÄÓ°Ïì³Ì¶ÈËæ×ÅÄÜÁ¿µÄÔö¸ß¶ø½¥½¥¼õÈõ. ¶øÈç¹ûÔöÇ¿µç×ÓÊøµÄÃܶÈ, Ôò×Ô¾Û½¹µÄËٶȾͻáÃ÷ÏÔ¼Ó¿ì, Õû¸ö×Ô¾Û½¹µÄ¹ý³ÌËùÒý·¢µÄ³¬¹âËÙÏàËÙ¶ÈÒ²»áÓú·¢Ã÷ÏÔ.
ͼ 7 ÀûÓõç×ÓÊøÖÖ×ÓⲨµ÷ÖÆÖÊ×ÓÊøµÄÄ£Äâ½á¹û¡¡(a), (b), (c)·Ö±ð¶ÔÓ¦µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeVʱµÄ×î´óµç³¡Ëæʱ¼ä±ä»¯; (d), (e), (f) ·Ö±ð¶ÔÓ¦µç×ÓÊøÄÜÁ¿$ {E}_{\mathrm{b}\mathrm{e}} $ = 100 MeV, 500 MeV, 1 GeVʱµÄÏàËÙ¶ÈËæʱ¼ä±ä»¯
Figure7. Simulation of proton beam modulation with electron beam seeding:(a), (b), (c) The maximum electric fields as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively; (d), (e), (f) the phase velocity as a function of time for the electron beam energy at ${E}_{\mathrm{b}\mathrm{e}}=100~\mathrm{M}\mathrm{e}\mathrm{V}$, 500 MeV, and 1 GeV, respectively.

ͼ 8 (a) ÔÚ$ \xi =100 c/{\omega }_{\mathrm{p}} $´¦²»Í¬µç×ÓÊøÄÜÁ¿Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯; (b) ÔÚ$ \xi =300 c/{\omega }_{\mathrm{p}} $´¦²»Í¬µç×ÓÊøÄÜÁ¿Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯
Figure8. (a) Phase velocity as a function of time at $ \xi =100 c/{\omega }_{\mathrm{p}} $ for different electron energy; (b) phase velocity as a function of time at $ \xi =300 c/{\omega }_{\mathrm{p}} $ for different electron energy.

ÁíÍâ, µç×ÓÊøÔÚⲨÖд«²¥Ê±»¹Êܵ½ÁËÒ»¸ö×ÝÏòµÄµç´ÅÁ¦[25]:
$\begin{split}&{E}_{z}(r,\theta,\xi ) \\=\,& -2{k}_{\mathrm{P}}^{2}{\int }_{0}^{\infty }\int _{0}^{2\mathrm{\pi }}\int _{-\infty }^{\xi }{\rho }_{\mathrm{b}}\left({r}',{\theta }',{\xi }'\right) {r}'{K}_{0}\left({k}_{\mathrm{P}}\mid r-{r}'\mid \right) \\&\times {\cos k}_{\mathrm{p}}\left(\xi -{\xi }'\right)\mathrm{d}{r}'\mathrm{d}{\theta }'\mathrm{d}{\xi }'.\\[-12pt]\end{split}$
¶øÓëÖ®Ïà¶ÔµÄ, µç×ÓÊø×÷ΪⲨµÄÄÜÁ¿À´Ô´, Ëüÿʱÿ¿Ì¼õÉÙµÄÄÜÁ¿ÕýºÃÓëÖ®²úÉúµÄβ²¨Ç¿¶ÈÏà¶ÔÓ¦, ¿ÉÒԵóöµç´ÅÁ¦FÕý±ÈÓÚµç×ÓÊøÃܶÈnbe, ÕâÒ²Òâζ×Å, µç×ÓÊøµÄÄÜÁ¿ºÄÉ¢ËÙ¶ÈÕý±ÈÓÚµç×ÓÊøËùЯ´øµÄµçºÉÁ¿. µ±µç×ÓÊøµÄÄÜÁ¿Ë¥ÍË, Æä·¢Éä¶ÈËùÒýÆðµÄÅòÕÍЧӦ»á³¬¹ýⲨÒýÆðµÄѹËõЧӦ, Õâ¸öʱºò, µç×ÓÊø¾Í»áÅòÕÍ, ËüµÄÃܶȽµµÍ, ´Ó¶ø²úÉúÁËÓëÉÏÊö×Ô¾Û½¹¹ý³ÌÏà·´µÄÏÖÏó, ʹµÃÏàËÙ¶ÈÓÐËù½µµÍ. ²»¹ý, ¼ÙÈçµç×ÓÊøÓÐ×Å×ã¹»µÄÄÜÁ¿, ÄÇôÕâ¸ö¹ý³Ì¾Í»á·¢ÉúµÄ±È½Ï»ºÂý. ÁíÍâ, µ±µç×ÓÊøµÄÄÜÁ¿ºÄ¾¡Ê±, Ëü»áÔÚ×ÝÏòÉϱäÐηÖÁÑ, ´Ó¶ø²úÉú²»Îȶ¨µÄÏàËÙ¶È, Èçͼ8(a)ºÍ8(b)Ëùʾ. ͬÀí, Èç¹û½µµÍµç×ÓÊøµÄµçºÉÁ¿, ÄÇôҲ×ÔÈ»¿ÉÒÔ¼õ»º¸Ã¹ý³Ì.
µ±µÈÀë×ÓÌåⲨÖеĵ糡Ôö¼Óµ½½Ó½üÓÚE0ʱ, ÓÉÓÚÏà¶ÔÂÛ·ÇÏßÐÔЧӦ, µÈÀë×ÓÌåÖÐⲨµÄ²¨³¤¾Í»á±»À­³¤[26], ¿ÉÒÔ½üËÆÃèÊöΪ${\lambda }_{\mathrm{P}}= $$ {\lambda }_{\mathrm{p}0}[1+\alpha {\left({E}_{\mathrm{m}}/{E}_{0}\right)}^{2}]$, ÆäÖÐ$ {\lambda }_{\mathrm{p}0} $ΪÏßÐÔÀíÂÛÖеĵÈÀë×ÓÌ岨³¤, $ \alpha $ÊÇÒ»¸ö²ÎÊý. ¼Ù¶¨Õû¸ö³¤ÖÊ×ÓÊøËùÐγɵÄⲨ½á¹¹ÔÚ×ÝÏòÉÏ°üº¬ÁËN¸ö²¨³¤, ÄÇôµ±Ã¿Ò»¸ö²¨³¤¶¼±»À­³¤Ò»µãµãʱ, ¶ÔÓÚⲨµÄÏàλ, ÌرðÊǾàÀëÖÊ×ÓÊøÍ·²¿½ÏÔ¶µÄλÖÃ, ¾ßÓм«´óµÄÓ°Ïì. Ò»°ã¶øÑÔ, ÎÞÂÛÊÇÖÊ×ÓÊø×Ôµ÷ÖÆ»¹Êǵç×ÓÊøÖÖ×ÓⲨÓÕµ¼µ÷ÖÆ, ËüÃǵÄⲨ´óÖ±仯¶¼ÊÇÏÈÉÏÉýºóϽµµÄ, ¶øËüÃDzúÉúµÄⲨËùÄÜ´ïµ½µÄ×î´óµç³¡´óÖÂÔÚ0.4E0¡ª0.7E0. µ±Ò»¸öλÖõĵ糡´ÓE1±ä»¯µ½E2ʱ, ¸ù¾ÝÉÏÊö$ {\lambda }_{\mathrm{P}} $¹«Ê½, ËüµÄ²¨³¤±ä»¯¼°Ïàλ±ä»¯´óԼΪ
$\varDelta \phi \approx N\mathrm{\delta }\phi \approx 2\mathrm{\pi }N\left(\frac{\mathrm{\delta }{\lambda }_{\mathrm{p}}}{{\lambda }_{\mathrm{p}}}\right)\sim \frac{\alpha {\left({E}_{2}\right)}^{2}-\alpha {\left({E}_{1}\right)}^{2}}{{\left({E}_{0}\right)}^{2}+\alpha {\left({E}_{1}\right)}^{2}}\text{.}$
ËùÒÔ, µ±Î²²¨ÔÚ¿ìËÙÔö´óʱ, ¸Ã·ÇÏßÐÔЧӦ»áʹµÃⲨµÄÏàËٶȷ¢Éú¾Þ´óµÄϽµ, ²¢ÇÒËæ×ŦÎ(N)µÄÔö´ó¶øÓú·¢Ã÷ÏÔ; µ±Î²²¨ÔÚ¿ìËÙϽµÊ±, ⲨµÄÏàËٶȻá¿ìËÙµØÉÏÉý, ÉõÖÁÓÚÍ»ÆƹâËÙ, ²úÉú³¬¹âËÙµÄÏàËÙ¶È. È»¶ø¸Ã¹ý³ÌÊÇ·ÇÏßÐÔЧӦ, ºÜÄѱ»¾«È·ÃèÊö, Ö»Äܸù¾Ý¹«Ê½¶¨ÐÔÃèÊö³ö´óÖµÄÎïÀíͼÏñ. ¸Ã»úÖÆÔÚûÓÐÖÖ×Óµç×ÓÊøⲨ´æÔÚµÄÖÊ×ÓÊø×Ôµ÷Öƹý³ÌÖÐÒ²»á¶ÔⲨÏàËٶȵÄÑÝ»¯Æðµ½Ï൱ÖØÒªµÄ×÷ÓÃ.
ÏÖ½ñAWAKEʵÑé[15]ÖÐËùʹÓõÄÄ£ÐͲ¢²»ÊÇÈçÒÔÉÏËùÊöµÄÔÚ×ÝÏòÉÏÍêÈ«¾ùÔÈ·Ö²¼, ¶øÊÇÓàÏÒº¯ÊýµÄ°ë²¨ÐÍ, º¯Êý±íÊöΪ${n}_{\mathrm{b}}\left(r, \xi \right)= \dfrac{{n}_{\mathrm{b}\mathrm{m}}}{2}\times $$ \mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{{r}^{2}}{{\sigma }_{r}^{2}}\right)\left[1-\cos \left(2\mathrm{\pi }\xi /L\right)\right]$, ÆäÖÐ$ {n}_{\mathrm{b}\mathrm{m}}=0.0056{n}_{0} $ΪÖÐÐÄÃܶÈ, $ {\sigma }_{r}=1 c/{\omega }_{\mathrm{P}} $, ËüÊÇÒ»¸ö×ÝÏòÃܶȴÓ0¿ªÊ¼ÉÏÉý²¢×îÖջص½0µÄÕâÑùÒ»ÖÖ·Ö²¼. ¸ÃʵÑéÀûÓü¤¹âÊø²úÉúµÄÒƶ¯µÈÀë×ÓÌå±ß½çÀ´¶ÔÖÊ×ÓÊø²úÉúµ÷ÖÆ. ÔÚûÓеç×ÓÊøµÄÇé¿öÏÂ, ÕâÑùµÄ¹ý³Ì·Ç³£²»ÀûÓÚÖÊ×ÓÊøµÄ×Ôµ÷ÖÆ, ÒòΪ²»½öÔö³¤ÂÊ»ºÂý, ¶øÇÒ¼«Ò×¼¤·¢Èí¹Ü²»Îȶ¨ÐÔ[14], ²»ÀûÓÚºóÐøÁ£×ÓÊøµÄ¼ÓËÙ. ¶øÔÚÏÖÓеĵç×ÓÊøÖÖ×Óµ÷ÖÆ·½°¸[22]ÖÐ, µç×ÓÊøµÄÒýÈ뽫ʹµÃÔ­±¾´¦ÓÚ¼¤¹âÊøÇ°°ë¶ÎµÄÖÊ×ÓÊøÒ²¿ÉÒÔÔËÓÃÓÚⲨ¼ÓËÙµÄÕû¸ö¹ý³Ì, ´Ó¶ø±ÜÃâ²»±ØÒªµÄÀË·Ñ. Ôڸ÷½°¸Öеç×ÓÊøÒýÈëËù´øÀ´µÄ±ä»¯ºÍÉÏÊöÒƶ¯µÈÀë×ÓÌå±ß½çÒýÆð×Ôµ÷ÖƵĹý³ÌÓкܴóÇø±ð.
ÔÚÒýÈëÉÏÊöµÄÖÊ×ÓÊø·Ö²¼µÄÇé¿öÏÂ, ±È½ÏÁËûÓеç×ÓÊøÓëÒýÈëµç×ÓÊøµÄÇé¿ö. ÔÚÓеç×ÓÊøµÄÄ£ÄâÖÐ, µç×ÓÊøµÄ²ÎÊýÈçÏÂ: ÄÜÁ¿E = 100 MeV, ³¤¶È$ {\xi }_{1}=1.57\mathrm{ }\mathrm{ }\mathrm{c}/{\omega }_{\mathrm{p}} $, $ {\sigma }_{r\mathrm{e}}=1\mathrm{ }\mathrm{c}/{\omega }_{\mathrm{p}} $, ÖÐÐÄÃܶÈ${n}_{\mathrm{b}\mathrm{e}\mathrm{m}}= $$ 0.0056{n}_{0}$, µç×ÓÊøµÄ¿Õ¼ä·Ö²¼±íÊöΪ${n}_{\mathrm{b}\mathrm{e}}\left(r, \xi \right)= $$ \dfrac{{n}_{\mathrm{b}\mathrm{e}\mathrm{m}}}{2}\mathrm{e}\mathrm{x}\mathrm{p}\left(-\dfrac{{r}^{2}}{{\sigma }_{r\mathrm{e}}^{2}}\right)\left[1-\cos \left(2\mathrm{\pi }\xi /{\xi }_{1}\right)\right]$, ¼´×ÝÏò·Ö²¼ÎªÓàÏÒº¯Êý°ë²¨ÐÍ, ºáÏò·Ö²¼Îª¸ß˹·Ö²¼.
ͼ9(a)ºÍͼ9(b)·Ö±ð¶Ô±ÈÁË$\xi =500 c/{\omega }_{\mathrm{p}} $, $\xi = $$ 750c/{\omega }_{\mathrm{p}}$Á½¸ö×ø±êÏÂÎÞÖÖ×ÓⲨµÄ×Ôµ÷ÖÆÓëÓÐÖÖ×ÓⲨµ÷ÖÆÇé¿öÏÂÖÊ×ÓÊøⲨÏàËÙ¶ÈËæʱ¼äµÄ±ä»¯Çé¿ö. ¿ÉÒÔÃ÷ÏԵؿ´³öÓеç×ÓÊøµÄÇé¿öÏÂ, ⲨÏàËÙ¶ÈÓÈÆäÊÇÔÚÄ£ÄâºóÆÚÓÐÁËÃ÷ÏÔµÄÔö¼Ó. ÁíÍâ, ÓÉÓÚµç×ÓÊøµÄµçºÉÁ¿±È½ÏµÍ, ÔÚµÈÀë×ÓÌåÖеÄÄÜÁ¿Ë¥¼õËٶȱȲ»ÉÏͼ8ÖÐ100 MeVËù¶ÔÓ¦µÄÄ£Äâ, ¹Ê¶øͼ9Öв¢Ã»ÓÐͼ8ºóÆÚ³öÏֵIJ»Îȶ¨ÏàËÙ¶È, ÕâÓëÉÏÒ»½ÚËù²ûÊöµÄ½áÂÛÊÇÒ»ÖµÄ. ×ÛÉÏËùÊö, ¼´±ã¸Ä±äÁËÖÊ×ÓÊøµÄ·Ö²¼, µç×ÓÊøÒÀÈ»¿ÉÒÔÌá¸ßƽ¾ùÏàËÙ¶È, ֮ǰËùµÃµ½µÄ½áÂÛÔڸıäÖÊ×ÓÊø·Ö²¼µÄÇé¿öÏÂÒ²ÒÀÈ»ÊÊÓÃ.
ͼ 9 (a) ÔÚ$ \xi =500 c/{\omega }_{\mathrm{p}} $´¦Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯; (b) ÔÚ$ \xi =750 c/{\omega }_{\mathrm{p}} $´¦Ä£ÄâµÃµ½µÄⲨÏàËÙ¶ÈËæʱ¼ä±ä»¯
Figure9. (a) Phase velocity as a function of time at $ \xi =500 c/{\omega }_{\mathrm{p}} $; (b) phase velocity at $ \xi =750 c/{\omega }_{\mathrm{p}} $.

±¾ÎÄͨ¹ýÀíÂÛ·ÖÎö²¢ÀûÓöþάÖù×ø±êÄ£ÄâÈí¼þLCODEÑо¿Á˵ç×ÓÊøµÄÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆⲨÏàËٶȵÄÓ°Ïì. ·¢ÏÖµç×ÓÊø¿ÉÒÔÌáÉýÕû¸öÖÊ×ÓÊø×Ôµ÷ÖƵÄÔö³¤ÂÊ, ÌáÉýⲨÏàËÙ¶È, ²¢ÇÒµç×ÓÊøµÄµçºÉÁ¿Ô½¸ß, ÌáÉýµÄЧ¹ûԽͻ³ö. ÁíÍâÑо¿»¹·¢ÏÖ, µç×ÓÊøÔÚÖÊ×ÓÊø×Ôµ÷Öƹý³ÌµÄÇ°ÆÚ»áͨ¹ý×Ô¾Û½¹µÄЧӦÌáÉýÏàËÙ¶È. µç×ÓÊøµÄµçºÉÁ¿Ô½¸ß¡¢ÄÜÁ¿Ô½µÍÔòÏàËÙ¶ÈÌáÉýÓú·¢Ã÷ÏÔ; ͨ¹ýÑ¡È¡ºÏÊʵIJÎÊý, ÉõÖÁ¿ÉÒÔ»ñµÃÒ»¸ö³¬¹âËÙµÄÏàËÙ¶È. ´ËÍâ, ±¾ÎÄ»¹Ì½ÌÖÁËÖîÈçµç×ÓÊøÄÜÁ¿ºÄÉ¢¡¢Ïà¶ÔÂÛЧӦÒýÆðµÄµÈÀë×ÓÌ岨³¤À­³¤µÈЧӦ¶ÔÏàËٶȵÄÓ°Ïì, ²¢ÔÚ×îºó±È½ÏÁ˲»Í¬ÖÊ×ÓÊø·Ö²¼Çé¿öÏÂÏàËٶȵÄÑÝ»¯, ÑéÖ¤ÁËÉÏÊöµç×ÓÊøÖÖ×ÓⲨ¶ÔÖÊ×ÓÊø×Ôµ÷ÖÆⲨµÄÏàËÙ¶ÈÓ°ÏìµÄÏà¹Ø½áÂÛÊÊÓÃÓÚ²»Í¬ÖÊ×ÓÊøÃܶȷֲ¼. ±¾Ñо¿¶ÔÓÚδÀ´µÄµç×ÓÊøÖÖ×Ó×Ôµ÷ÖÆⲨ¼ÓËÙ·½°¸¾ßÓÐÒ»¶¨µÄ²Î¿¼¼ÛÖµ.
×÷Õ߸Ðл¶íÂÞ˹BudkerºËÎïÀíÑо¿ËùKonstantin Lotov½ÌÊÚÔÊÐíʹÓÃËû¿ª·¢µÄLCODE³ÌÐò, ²¢ÌṩÏà¹Ø°ïÖú.
Ïà¹Ø»°Ìâ/¹ý³Ì ÖÖ×Ó µç×ÓÊø µç×Ó ÖÊ×Ó

  • ÁìÏÞʱ´ó¶îÓÅ»Ýȯ,Ïí±¾Õ¾Õý°æ¿¼Ñп¼ÊÔ×ÊÁÏ!
    ´ó¶îÓÅ»Ýȯ
    ÓÅ»ÝȯÁìÈ¡ºó72СʱÄÚÓÐЧ£¬10ÍòÖÖ×îп¼Ñп¼ÊÔ¿¼Ö¤Ààµç×Ó´òÓ¡×ÊÁÏÈÎÄãÑ¡¡£º­¸ÇÈ«¹ú500ÓàËùԺУ¿¼ÑÐרҵ¿Î¡¢200¶àÖÖÖ°Òµ×ʸñ¿¼ÊÔ¡¢1100¶àÖÖ¾­µä½Ì²Ä£¬²úÆ·ÀàÐÍ°üº¬µç×ÓÊé¡¢Ìâ¿â¡¢È«Ì××ÊÁÏÒÔ¼°ÊÓƵ£¬ÎÞÂÛÄúÊÇ¿¼Ñи´Ï°¡¢¿¼Ö¤Ë¢Ì⣬»¹ÊÇ¿¼Ç°³å´ÌµÈ£¬²»Í¬ÀàÐ͵IJúÆ·¿ÉÂú×ãÄúѧϰÉϵIJ»Í¬ÐèÇó¡£ ...
    ±¾Õ¾Ð¡±à FreeÒ¼°Û·ÖѧϰÍø 2022-09-19
  • Íп¨Âí¿ËÎÞÅöײ²¶»ñµç×ÓÄ£ÔÚʱ¿Õ±íÏóÖеÄȺËÙ¶È
    ÕªÒª:°´ÕÕÕµÈ[ZhangYZ,LiuZY,MahajanSM,XieT,LiuJ2017Phys.Plasmas24122304]·¢Õ¹µÄƯÒƲ¨-´ø×´Á÷ÀíÂÛ,½«¶àÖس߶ȵ¼ÊýÕ¹¿ª·¨Ó¦Óõ½µç×ÓƯÒƶ¯Àíѧ·½³Ì,Á㼶ΪÃèÊö΢¹Û³ß¶È²¶»ñµç×ÓÄ£µÄÏßÐÔ±¾Õ÷Ä£·½³Ì,Ò»¼¶Îª½é¹Û³ß¶ÈÊÜ´ø×´Á÷µ÷ÖƵIJ¶»ñµç×ÓÄ£µÄ°üÂç·½³Ì. ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • µª»¯ïØ»ù¸ßµç×ÓǨÒÆÂʾ§Ìå¹Üµ¥Á£×ÓºÍ×ܼÁÁ¿Ð§Ó¦µÄʵÑéÑо¿
    ÕªÒª:ÀûÓÃÖØÀë×Ó¼ÓËÙÆ÷ºÍ60Co¦ÃÉäÏßʵÑé×°ÖÃ,¿ªÕ¹ÁËpÐÍÕ¤ºÍ¹²Õ¤¹²Ô´¼¶Áª½á¹¹ÔöÇ¿Ð͵ª»¯ïØ»ù¸ßµç×ÓǨÒÆÂʾ§Ìå¹ÜµÄµ¥Á£×ÓЧӦºÍ×ܼÁÁ¿Ð§Ó¦ÊµÑéÑо¿,¸ø³öÁ˵ª»¯ïØÆ÷¼þµ¥Á£×ÓЧӦ°²È«¹¤×÷ÇøÓò¡¢×ܼÁÁ¿Ð§Ó¦Ãô¸Ð²ÎÊýÒÔ¼°·øÉäÏìÓ¦¹æÂÉ.ʵÑé·¢ÏÖ,pÐÍÕ¤½á¹¹µª»¯ïØÆ÷¼þ¾ßÓнϺõĿ¹µ¥Á£×ÓºÍ×ܼÁÁ¿·øÉäÄÜÁ¦,Æäµ¥Á£×ÓÉÕ»ÙãÐ ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ×¼¶þάʪ¿ÅÁ£ÌåϵÈÚ»¯¹ý³ÌÖеĽṹÓëȱÏÝ
    ÕªÒª:Ñо¿¿ÅÁ£ÌåϵÖеĽṹÓëȱÏݶÔÓÚÑо¿¹Ì-ÒºÈÚ»¯µÄÎïÀí»úÖƾßÓÐÖØÒªµÄ¼ÛÖµ.±¾ÎÄʵÑéÑо¿ÁË´¹Ö±Õñ¶¯Ïµ¥²ãʪ¿ÅÁ£ÔÚ¹Ì-ÒºÈÚ»¯¹ý³ÌÖеĽṹÓëȱÏÝ.¸ù¾ÝʵÑé¼°ÀíÂÛ·ÖÎö¹¹½¨ÁËʪ¿ÅÁ£ÌåϵµÄ½Ó´¥Ä£ÐÍ,Á¿»¯ÁË×¼¶þάʪ¿ÅÁ£ÌåϵÈÚ»¯¹ý³ÌÖпÅÁ£µÄ½á¹¹±ä»¯.È»ºóÒÔ¿ÅÁ£Îªµã½¨Á¢Voronoiͼ¶Ô¿ÅÁ£ÌåϵµÄ¡°Ïࡱת±ä½øÐÐÑо¿ ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ¹²éî¾ÛºÏÎïÁ´Öй⼤·¢¹ý³ÌµÄÎÞÐòЧӦ
    ÕªÒª:Ó¦Óðüº¬Á´ÄÚÎÞÐòºÍµç×Ó¹ØÁªµÄSu-Schriffer-HeegerÄ£ÐÍ,Ñо¿Á˹²éî¾ÛºÏÎïÁ´ÖÐÎÞÐòЧӦÔڹ⼤·¢ÑÝ»¯¹ý³ÌÖеÄ×÷ÓÃ,ÓÈÆäÊǶԼ¤×Ó²úÂʵÄÓ°Ïì.²ÉÓÃmulti-configurationaltime-dependentHartree¨CFock·½·¨´¦Àíµç×Ó²¿·ÖµÄº¬Ê±Schr?dinger·½ ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • »ùÓÚÄÉÃ×·¢µç»úµÄ´¥¾õ´«¸ÐÔÚÈáÐÔ¿É´©´÷µç×ÓÉ豸ÖеÄÑо¿ÓëÓ¦ÓÃ
    ÕªÒª:ÈáÐÔ¿É´©´÷µç×ÓÉ豸ÒòÆäÔÚÈ˹¤ÖÇÄÜ¡¢½¡¿µÒ½ÁƵÈÁìÓòµÄÓ¦ÓöøÊܵ½ÁËÈËÃǵļ«´ó¹Ø×¢.È»¶ø,ÈçºÎ½µµÍ¹¦ºÄ»òʵÏÖ×Ô¹©ÄÜÒ»Ö±ÊÇ×è°­Æä¹ã·ºÓ¦ÓõÄÆ¿¾±.Ëæ×ÅÄÉÃ×·¢µç»úÓë×ÔÇý¶¯¼¼ÊõµÄÐËÆð,ÓÈÆäÒÔĦ²ÁÄÉÃ×·¢µç»ú(TENG)ÓëѹµçÄÉÃ×·¢µç»ú(PENG)´ú±íµÄÑо¿,Ϊ½â¾ö¿É´©´÷´«¸ÐÆ÷µçÔ´µÄÎÊÌâÌṩÁË¿ÉÐеķ½°¸.TEN ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ÈÝÐÔñîºÏµÈÀë×ÓÌåÖеç×Ó¼ÓÈȹý³Ì¼°·Åµç²ÎÊý¿ØÖÆ
    ÕªÒª:ÈÝÐÔñîºÏµÈÀë×ÓÌå·ÅµçÒòÔÚ¹¤Òµ½çÓÐÖØÒªµÄÓ¦ÓüÛÖµ¶øÊܵ½¹ã·º¹Ø×¢.¶ÔÓÚÈÝÐÔñîºÏµÈÀë×ÓÌå·ÅµçµÄÑо¿Ö÷Òª¼¯ÖÐÓÚ¶ÔµÈÀë×ÓÌå²ÎÊýµÄ¿ØÖÆ,ÒÔʵÏÖ¸üºÃµÄ¹¤ÒÕЧ¹û,ÀýÈç¸ßÉî¿í±È¿ÌÊ´µÈ.¶ø¹ØÓÚµÈÀë×ÓÌå²ÎÊýµÄµ÷¿ØÖ÷Òª·ÖΪÆøÌ塢ǻÊÒÒÔ¼°Ô´ÕâÈý¸ö·½Ãæ.¸Ä±äÕâЩÍⲿ²ÎÊý,¿ÉÒÔÖ±½ÓÓ°ÏìÇʲãµÄ¶¯Á¦Ñ§¹ý³ÌÒÔ¼°´øµçÁ£×ӵļÓÈȹý³Ì ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • Ô­×ÓÌæλ²ôÔÓ¶Ôµ¥²ãJanus WSeTeµç×ӽṹµÄÓ°Ïì
    ÕªÒª:»ùÓÚµÚÒ»ÐÔÔ­Àí¼ÆËãϵͳµØÑо¿Á˵ª×塢±×åºÍ3d¹ý¶É½ðÊôÔªËØ(Ti,V,Cr,Mn,Fe,Co)Ìæλ²ôÔÓ¶Ôµ¥²ãJanus¹ý¶É½ðÊôÁò×廯ºÏÎïWSeTeµç×ӽṹµÄÓ°Ïì.ͨ¹ý¶ÔÄÜ´ø½á¹¹¡¢µçºÉתÒÆÒÔ¼°´ÅÐԵķÖÎö,·¢ÏÖµª(±)×åÔ­×ÓÌæλ²ôÔÓµ¥²ãWSeTe»á·¢Éú±¾Õ÷°ëµ¼Ìå-p(n)ÐÍ°ëµ¼ÌåµÄת±ä,Ti,VÔ­ ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ÉÁµçM·ÖÁ¿¹âÆ×ÌØÕ÷¼°Í¨µÀζȺ͵ç×ÓÃܶÈÌØÐÔ
    ÕªÒª:ÀûÓÃÎÞÏÁ·ì¹âÕ¤ÉãÆ×ÒǼǼµÄÒ»´ÎÉÁµçÊ״λػ÷ºó3¸öM·ÖÁ¿µÄ¹âÆ××ÊÁÏ,·ÖÎöÁËÆä¹âÆ×ÌØÕ÷.²¢½áºÏµÈÀë×ÓÌåÀíÂÛ,Ê״μÆËãÁËÉÁµçM·ÖÁ¿ÄÚ²¿ºËÐÄͨµÀºÍÖÜΧµçÔβãͨµÀµÄζȺ͵ç×ÓÃܶÈ.Ñо¿ÁËÕâÁ½¸öÎïÀíÁ¿ÑØͨµÀµÄ±ä»¯ÌØÐÔ,²¢ÓëÏàÓ¦»Ø»÷·Åµç½øÐÐÁ˶ԱÈ.½á¹û±íÃ÷:ÉÁµçM·ÖÁ¿µÄ¹âÆ×ÌØÕ÷Ïà±È»Ø»÷µÄ¹âÆ×ÌØÕ÷ÓÐÃ÷ÏÔ²îÒì, ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ¸ßÆ·Öʼ¤¹âⲨ³¡µç×Ó¼ÓËÙÆ÷
    ÕªÒª:¼¤¹âⲨ³¡µç×Ó¼ÓËٵļÓËÙÌݶÈÏà±ÈÓÚ´«Í³Ö±Ïß¼ÓËÙÆ÷¸ßÁË3¡ª4¸öÁ¿¼¶,¶ÔÓÚСÐÍ»¯Á£×Ó¼ÓËÙÆ÷Óë·øÉäÔ´µÄÑÐÖƾßÓÐÖØÒªµÄÒâÒå,³ÉΪµ±½ñ¹úÄÚÍâµÄÑо¿Èȵã.̨ʽ»¯·øÉäÔ´Ó¦ÓÃÐèÇóµÄÌá¸ß,ÌرðÊÇ×ÔÓɵç×Ó¼¤¹â×°ÖõĿìËÙ·¢Õ¹,¶Ôµç×ÓÊøÁ÷Æ·ÖÊÌá³öÁ˸ü¸ßµÄÒªÇó,¼¤¹âⲨ³¡µç×Ó¼ÓËÙµÄÊøÁ÷Æ·ÖʺÍÎȶ¨ÐÔÊÇĿǰʵÏÖÐÂÐÍ·øÉäÔ´µÄ ...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29
  • ¼¤¹â¼ÓËÙ¸ßÄÜÖÊ×ÓʵÑéÑо¿½øÕ¹¼°Ð¼ÓËÙ·½°¸
    ÕªÒª:ÀûÓó¬Ç¿¼¤¹âÓëµÈÀë×ÓÌåÏ໥×÷ÓÃÀ´¼ÓËÙ¸ßÄÜÀë×ÓÊǼ¤¹âµÈÀë×ÓÌåÎïÀí¼°¼ÓËÙÆ÷ÎïÀíÁìÓòµÄÑо¿Èȵã.¾­¹ýÁ˽ü20ÄêµÄ·¢Õ¹,¼¤¹âÀë×Ó¼ÓËÙÒÑÈ¡µÃ·á˶³É¹û,´ßÉúÁËÒ»ÅúеÄÓ¦ÓÃ.±¾ÎĸÅÊöÁ˹úÄÚÍ⼤¹âÀë×Ó¼ÓËÙËùÈ¡µÃµÄ±êÖ¾ÐÔʵÑéÑо¿½øÕ¹,ΧÈƸßÄÜÖÊ×ӵIJúÉúÕâÒ»¹Ø¼üÎÊÌâ½øÐÐÁËÉîÈëµÄ̽ÌÖ,½éÉÜÁ˽ü¼¸ÄêÀ´·¢Õ¹µÄÓÐDZÁ¦µÄР...
    ±¾Õ¾Ð¡±à Free¿¼Ñп¼ÊÔ 2021-12-29