1.Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 2.University of Science and Technology of China, Hefei 230026, China 3.China Center for Resources Satellite Data and Application, Beijing 100094, China 4.State Environmental Protection Key Laboratory of Satellite Remote Sensing, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China 5.Anhui Institute of National Defense Science and Technology Information, Hefei 230001, China
Fund Project:Project supported by the National Key R&D Program of China (Grant No. 2018YFB0504600)
Received Date:22 December 2020
Accepted Date:18 February 2021
Available Online:28 June 2021
Published Online:05 July 2021
Abstract:The adjacency effect, the contribution of the neighboring pixels to the radiance of the line of sight pixel, is caused by the Rayleigh scattering of atmospheric molecules and Mie scattering of aerosol particles. The adjacency effect will cause the reflectance of each pixel in the apparent reflectance satellite image to be between the real reflectance and the average background reflectance, reducing the accuracy of the surface reflectance inversion. Therefore, it is very important to remove the adjacency effect to improve the accuracy of retrieving the surface reflectance from satellite images. The most critical issue of the adjacency effect is to accurately calculate the weight of the contribution of each background pixel to the adjacency effect. The weight value of the contribution of each background pixel to the adjacency effect mainly depends on the spatial distance between the target pixel and the background pixel, the difference in reflectance between the target pixel and the background pixel, and the optical thickness of atmospheric molecules and the optical thickness of aerosol. At present, the commonly used weight function for calculating the weight value considers only the influence of optical thickness and spatial distance on the weight value. These weight functions are applied to a relatively uniform surface. However, when these weight functions are applied to an inhomogeneous surface, they will greatly reduce the accuracy of the adjacency effect correction. The combination of ground features in satellite images with the sub-meter spatial resolution is complex, so the influence of the difference in reflectance between the target pixel and the background pixel on the adjacency effect must be considered. The adaptive atmospheric correction algorithm proposed in this paper can adjust the weight value of the contribution of background pixels to the adjacency effect according to the spatial distance between the target pixel and the background pixel, the difference in reflectance between the target pixel and the background pixel, and the difference between the atmospheric molecules’ optical thickness and aerosol optical thickness. The adaptive atmospheric correction algorithm is used to correct the adjacency effect on GF-2 panchromatic satellite images. The results show that the adaptive atmospheric correction algorithm can effectively remove the adjacency effect in sub-meter spatial resolution optical satellite images, improve both the accuracy of quantitative study and the satellite image quality. Keywords:adjacency effect/ sub-meter satellite image/ adaptive atmospheric correction/ quantitative remote sensing
全文HTML
--> --> --> 1.引 言邻近效应是指卫星成像过程中目标物周围自然环境反射的太阳辐射对卫星入瞳处目标像元辐亮度的贡献. 大气分子和气溶胶粒子的散射效应导致地面目标反射的太阳辐射有一部分会被散射出瞬时视场角(记为L1), 目标物周围自然环境反射的太阳辐射有一部分会被散射进瞬时视场角(记为L2). 相邻地物反射率差异较小时, L1近似等于L2, 卫星影像中邻近效应的表观效果不明显. 相邻地物反射率差异较大时, L1与L2相差较大, 卫星影像中邻近效应的表观效果较明显, 即卫星影像的视觉效果较模糊[1,2], 表观反射率卫星影像中目标像元反射率介于其真实反射率和背景平均反射率之间[3]. 所以有必要对卫星影像进行邻近效应校正, 以提高定量遥感精度和卫星影像质量. 光学卫星影像空间分辨率越高, 大气能见度越低, 地表反射率组合越复杂, 邻近效应越强[4-10]. 邻近效应校正的难点在于很难确定邻近效应范围及该范围内各像元对邻近效应的贡献权重. 邻近效应范围主要取决于卫星载荷空间分辨率、气溶胶垂直分布和卫星几何观测条件[11], 结合相关参数获取的便捷性以及算法的实用性, 在实际大气校正算法中均采用卫星载荷空间分辨率、550 nm处的气溶胶光学厚度和几何观测条件来粗略判断邻近效应的范围. 卫星载荷空间分辨率越高、观测天顶角越小、气溶胶光学厚度越大, 邻近效应范围越小. 背景各像元对邻近效应的贡献权重值主要取决于目标像元与背景像元之间的空间距离、反射率差值、大气分子光学厚度和气溶胶光学厚度. 目前计算该权重值的权重函数可分成三类: 第一类是仅考虑空间距离对该贡献权重值的影响, 比如MODTRAN (moderate resolution atmospheric transmission), FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes), ATCOR (atmospheric and topographic correction for satellite imagery)中权重函数表示成径向指数函数[12]或高斯函数[13]; 第二类是仅考虑光学厚度和空间距离对该权重值的影响, 比如6 S中权重函数表示成环境函数[14]; 第三类是采用Monte-Carlo模拟光线从卫星入瞳处传输至地表的过程, 并统计距离目标像元一定空间距离内的光子数, 计算该空间范围内各像元对邻近效应的贡献权重[15.16], 上述三类权重函数均没有考虑背景像元与目标像元反射率的差值对邻近效应的影响. 相比于中/低空间分辨率光学卫星影像, 亚米级空间分辨率光学卫星影像地物组合复杂, 相邻像元反射率差值较大. 理论上讲, MODTRAN, FLAASH, ATCOR和6S(second simulation of a satellite signal in the solar spectrum)模型中的邻近效应校正算法均无法对亚米级空间分辨率卫星影像中邻近效应进行有效校正. 基于此现状, 我们开发了自适应大气校正算法来校正亚米级空间分辨率可见光-近红外波段卫星影像中的邻近效应, 其自适应特点是可根据大气分子光学厚度、气溶胶光学厚度、目标像元与背景像元之间的空间距离和反射率差值来调整背景各像元对邻近效应的贡献权重值. 目前只有全色波段卫星影像的空间分辨率为亚米级, 并且FLAASH和ATCOR只能对多光谱/高光谱卫星影像进行大气校正(包括大气程辐射校正和邻近效应校正), 无法对全色波段卫星影像进行大气校正. 所以本文以嵩山辐射定标场GF-2全色波段(空间分辨率为0.81 m)卫星影像为例, 分别利用自适应大气校正算法、6S 辐射传输模型中的大气校正算法和MODTRAN辐射传输模型中的大气校正算法对其进行邻近效应校正, 并利用地面同步实测地物反射率与上述三个大气校正算法校正后的卫星影像中相应区域的平均反射率比较, 以验证自适应大气校正算法对亚米级空间分辨率卫星影像定量遥感精度和图像质量提升效果. 2.方 法22.1.大气校正算法介绍 -->
2.1.大气校正算法介绍
32.1.1.自适应大气校正算法 -->
2.1.1.自适应大气校正算法
卫星入瞳处背景像元辐亮度(${L_{{\rm{background}}}}$)和卫星入瞳处目标像元辐亮度 (${L_{{\rm{target}}}}$) 的比值 (${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$)可表示邻近效应的相对大小[17]. 图1给出了模拟不同目标像元反射率与背景像元反射率组合情况下的${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$(输入的大气参数和几何观测参数如表1所示). 图1中的数据表明, 目标像元反射率与背景像元反射率组合不同时, 比值${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$不同, 并且该比值随背景反射率增大而增大, 随目标反射率增大而减小. 故可利用该比值表示背景像元反射率与目标像元反射率差异对计算背景各像元对邻近效应贡献权重值的相对大小. 将该比值和6S辐射传输模型中的辐射传输方程结合, 整理成适用于亚米级空间分辨率可见光-近红外波段卫星影像的大气校正算法. 基于上述原理, 开发的自适应大气校正算法可整理成如下形式: 图 1 不同目标像元反射率与背景像元反射率组合情况下的${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$ Figure1. The value of ${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$ for different combinations of target reflectance and background reflectance.
成像时间
2020-03-20 11:28:33
太阳天顶角/(°)
$ {37.8709}^{} $
太阳方位角/(°)
$ {152.372}^{} $
观测天顶角/(°)
$ {12.503}^{} $
观测方位角/(°)
$ {97.6684}^{} $
气溶胶类型
大陆型气溶胶
气溶胶光学厚度 (550 nm)
0.4018
大气模式
中纬度夏季
波段
0.4—0.9 μm
表1大气参数和观测几何条件 Table1.Atmospheric parameters and observed geometric conditions.
图 4 GF-2全色波段卫星图像 (a) 表观反射率图; (b) 基于自适应大气校正算法校正后的卫星影像(记为“adaptive-AC地表真实反射率图”); (c)基于6S模型中的大气校正算法校正后的卫星影像(记为“6S-AC地表真实反射率图”); (d)基于MODTRAN模型中的大气校正算法校正后的卫星影像(记为“MODTRAN-AC地表真实反射率图”) Figure4. GF-2 panchromatic band image: (a) Apparent reflectance image; (b) atmospheric correction result based on adaptive-AC (denoted as “adaptive-AC real surface reflectance image”); (c) atmospheric correction result based on the atmospheric algorithm in 6S model (denoted as “6S-AC real surface reflectance image”); (d) atmospheric correction result based on the atmospheric algorithm in MODTRAN model (denoted as “MODTRAN-AC real surface reflectance image”).