1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto- Electronics, Shanxi University, Taiyuan 030006, China 2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211, 11604191, 11804207, 61805133), and the Fund for “1331Project” Key Subjects Construction of Shanxi Provincie, China (Grant No. 1331KSC)
Received Date:24 August 2020
Accepted Date:09 December 2020
Available Online:19 March 2021
Published Online:05 April 2021
Abstract:The Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble is an important means to generate quantum correlation and entanglement between photons and atoms (quantum interface). When a write pulse acts on atoms, the DLCZ quantum memory process will be generated, which has been extensively studied. In the process a spontaneous Raman scattering (SRS) of a Stokes photon is generated, and a spin-wave excitation stored in the atomic ensemble is created at the same time. The higher probability of the generation of Stokes photons will cause more noise and reduce entanglement. On the contrary, the low generation probability of Stokes photons affects the success probability of entanglement distribution on a quantum repeater. How to increase generation probability of Stokes photons without causing more noise is an urgent problem to be resolved. In this work, a 87Rb atomic ensemble is placed in a standing wave cavity which resonates with the Stokes photon. This cavity has a trip length of 0.6 m and a free spectral range (FSR) of 256 MHz. The optical loss of all the optical elements in this cavity is 9%, of which 4% loss originates from the other optical elements and 5% loss from the vacuum chamber of the magneto-optical trap (MOT). The fineness of the cavity with the cold atoms is measured to be ~19.1. By calculating the total probability of Stokes photon emission out of the cavity, we derive the enhancement factor of this standing wave cavity when the cavity loss is l. When this cavity is locked with PDH frequency locking technique, we observe that the production probability of the Stokes photons is 8.7 times higher than that without cavity due to the optical cavity enhancement effect. Under this condition, the relationship between the generation probability of Stokes photons and the power of write beam is studied. The write excitation probability changes linearly with the power of write beam. This work provides an experimental solution to reducing the noise caused by time multimode operation in DLCZ scheme. Keywords:Duan-Lukin-Cirac-Zoller protocol/ spontaneous Raman scattering (SRS)/ Stokes photon/ standing wave cavity