1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto- Electronics, Shanxi University, Taiyuan 030006, China 2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211, 11604191, 11804207, 61805133), and the Fund for “1331Project” Key Subjects Construction of Shanxi Provincie, China (Grant No. 1331KSC)
Received Date:24 August 2020
Accepted Date:09 December 2020
Available Online:19 March 2021
Published Online:05 April 2021
Abstract:The Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble is an important means to generate quantum correlation and entanglement between photons and atoms (quantum interface). When a write pulse acts on atoms, the DLCZ quantum memory process will be generated, which has been extensively studied. In the process a spontaneous Raman scattering (SRS) of a Stokes photon is generated, and a spin-wave excitation stored in the atomic ensemble is created at the same time. The higher probability of the generation of Stokes photons will cause more noise and reduce entanglement. On the contrary, the low generation probability of Stokes photons affects the success probability of entanglement distribution on a quantum repeater. How to increase generation probability of Stokes photons without causing more noise is an urgent problem to be resolved. In this work, a 87Rb atomic ensemble is placed in a standing wave cavity which resonates with the Stokes photon. This cavity has a trip length of 0.6 m and a free spectral range (FSR) of 256 MHz. The optical loss of all the optical elements in this cavity is 9%, of which 4% loss originates from the other optical elements and 5% loss from the vacuum chamber of the magneto-optical trap (MOT). The fineness of the cavity with the cold atoms is measured to be ~19.1. By calculating the total probability of Stokes photon emission out of the cavity, we derive the enhancement factor of this standing wave cavity when the cavity loss is l. When this cavity is locked with PDH frequency locking technique, we observe that the production probability of the Stokes photons is 8.7 times higher than that without cavity due to the optical cavity enhancement effect. Under this condition, the relationship between the generation probability of Stokes photons and the power of write beam is studied. The write excitation probability changes linearly with the power of write beam. This work provides an experimental solution to reducing the noise caused by time multimode operation in DLCZ scheme. Keywords:Duan-Lukin-Cirac-Zoller protocol/ spontaneous Raman scattering (SRS)/ Stokes photon/ standing wave cavity
全文HTML
--> --> --> 1.引 言在远距离量子节点之间实现纠缠是量子通信和量子中继的难点之一, 为实现量子中继器[1,2]、远距离量子通信[3]和量子密码[4], 量子节点间纠缠态的分布无疑提供了很有前途的途径. 实现基于原子系综的可伸缩长距离量子通信的最有价值的协议之一是Duan, Lukin, Cirac和Zoller(DLCZ)在2001年提出的协议[3], 由于该方案原理简单, 迅速成为热点研究课题, 相应地发展出大量衍生方案. 然而, 大多方案的一个显著缺点是纠缠光子产率低, 使得长距离纠缠分发难以成功. 高制备速率和纠缠自旋波光子对的确定性产生是量子中继器和量子网络的重要组成部分. 实现光子-原子纠缠的方式有多种, 其中冷原子系综的自发拉曼散射(SRS)[5-13]是应用最广泛也是比较简单的方法之一. SRS的具体过程为一束特定频率的光(写光)与原子相互作用, 产生一个自旋波激发存储在原子中的同时发射出一个Stokes光子到空间中, 这一过程叫做SRS的写过程; 之后由一束其他频率的光(读光)从相反的方向与原子作用, 这将会把spin-wave读出, 同时向空间中发射一个反斯托克斯(anti-Stokes)光子, 这一过程为读过程. 许多实验已经通过SRS实现了原子-光子纠缠的产生[7,9,14-16]. 在原子系综中实现纠缠就要求写激发率较低, 这样可以避免读出噪声过大而引起纠缠降低, 因此, 纠缠光子对的低产生率限制了纠缠在量子中继器中成功分布的总时间和量子通信的长距离[17,18]. 为了能够在低激发率的条件下增加纠缠光子对的产生速率, 人们提出了许多方案[19,20], 包括山西大学光电研究所的研究小组先后实现的空间多模存储[21]和时间多模存储[22]. 但在时间倍增多模自旋波产生过程中, 需要将写激发光多次施加到原子系综中, 由此将引起大的噪声[21], 而使得纠缠降低[23]. Simon等[23]提出一个改进方案: 通过光学腔与Stokes光子共振, 可以将噪声大大抑制. Heller等[24]通过将原子系综嵌入低精细度光学腔内, 使Stokes光子与腔共振, 大大抑制了时间多模存储操作中产生的额外噪声. 本文研究了原子系综中光学腔增强的DLCZ写过程激发实验, 利用驻波腔实现了Stokes光子产率的倍增, 有腔且锁定的情况下Stokes光子产生概率比无腔时增大了8.7倍. 2.实验装置及能级结构我们实验利用${}^{87}{\rm{Rb}}$冷原子系综的SRS过程来实现光与原子纠缠的产生. 图1为写过程的实验能级图, 俘获的原子可以处在基态的任一能级上, 因此需要将原子制备到实验所需的能级上, 两束态制备光的频率锁定在$\left| {5{{\rm{S}}_{1/2}}, F = 2} \right\rangle \to \left| {5{{\rm{P}}_{1/2}}, F' = 1} \right\rangle $和$\left| {{\rm{5}}{{\rm{S}}_{{{\rm{1}} / {\rm{2}}}}}{{, F}} = {\rm{2}}} \right\rangle \to \left| {{\rm{5}}{{\rm{P}}_{{{\rm{1}} / {\rm{2}}}}}{{, F'}} = {\rm{2}}} \right\rangle $上, 其中一束光为左旋圆偏振, 另一束为右旋圆偏振. 两束泵浦光偏振必须相反才能保证将所有的原子从$\left| {5{{\rm{S}}_{1/2}}, F = 2} \right\rangle $的原子制备到$\left| {5{{\rm{S}}_{1/2}}, F = 1} \right\rangle $上. 以处在$| 5{{\rm{S}}_{1/2}}, F = 1, $$ m = 0 \rangle$上的原子为例, 在一束频率锁定在$| 5{{\rm{S}}_{1/2}}, $$ F = 1 \rangle \to \left| {5{{\rm{P}}_{1/2}}, F' = 2} \right\rangle$红失谐20 MHz的写光与该能级上的原子发生作用后, 处在$| 5{{\rm{S}}_{1/2}}, F = 1, $$ m = 0 \rangle $上的原子就会吸收能量跃迁到$| 5{{\rm{P}}_{1/2}}, F' = 2, $$ m = 1 \rangle $能级上, 由于自发拉曼过程, 原子会自发地落到$\left| {5{{\rm{S}}_{1/2}}, F = 2, m = 0} \right\rangle$ ($\left| {5{{\rm{S}}_{1/2}}, F = 2, m = 2} \right\rangle $)能级, 此时原子内部会存储一个$\left| + \right\rangle $$\left( {\left| - \right\rangle } \right)$的自旋波激发, 并且激发出一个$\left| R \right\rangle $$\left( {\left| L \right\rangle } \right)$Stokes光子. 整个过程中, 自旋波激发、写光和Stokes光子的波矢量满足${k_{\rm{m}}} = {k_{\rm{w}}} - {k_{\rm{s}}}$. 在写过程完成后, 获得了自旋波-光子纠缠态$\left| \Phi \right\rangle = \sqrt \chi \left| \Phi \right\rangle = \sqrt \chi ( \cos \theta \left| + \right\rangle \left| R \right\rangle + $$ \sin \theta \left| - \right\rangle \left| L \right\rangle )$, $\left| + \right\rangle $$\left( {\left| - \right\rangle } \right)$表示位于能级$\left| {a, {m_a}} \right\rangle\to| b, {m_b} = {m_a} \rangle$$( \left| {a, {m_a}} \right\rangle\to$$ \left| {b, {m_b} = {m_a} + 2} \right\rangle )$上的自旋波极化, $\left| R \right\rangle $$\left( {\left| L \right\rangle } \right)$代表${\sigma ^ + }$$\left( {{\sigma ^ - }} \right)$偏振态的Stokes光子, 公式中的${\rm{cos}}\theta $代表C-G(Clebsch-Gordan)系数. 图 1${}^{87}{\rm{Rb}}$实验能级图 (a)表示SRS中的写过程, W表示写光光场, ${\sigma ^ + }$(${\sigma ^ - }$)代表左(右)旋圆偏振的Stokes光子 Figure1. Relevant ${}^{87}{\rm{Rb}}$ atomic levels. (a) is the writing process of the SRS process, The coupling light field are writing light field(W), ${\sigma ^ + }$(${\sigma ^ - }$) represents left (right) polarization of Stokes.