全文HTML
--> --> --> -->2.1.研究对象
气液式针栓喷注器示意图如图1(a)所示, 气膜沿轴向从环缝中流出, 贴壁流动, 液体从径向孔中喷出到气膜中. 简化为针栓喷注器单元后剖面图如图1(b)所示, 液体射流从圆孔中喷出到平面气膜中, 被气膜吹弯变形, 然后破碎.图 1 (a) 针栓喷注器; (b)针栓喷注单元
Figure1. (a) Pintle injector; (b) pintle injector element.
2
2.2.实验设备
开展实验所用的实验系统如图2所示, 主要包含供应系统、测量和控制系统、成像系统、针栓喷注单元实验件和计算机等. 空气瓶里面储存高压空气, 经过减压阀后降到实验所需压力, 作为针栓喷注单元的气体推进剂; 氮气瓶储存高压氮气, 经过减压阀后氮气进入水罐, 将水加压到所需压力, 作为针栓喷注单元的液体推进剂. 成像系统主要由高速摄像机、背景光源和计算机组成. 背景光源产生的强光穿过喷雾后被高速摄像机捕捉, 喷雾以图像灰度值的形式被记录下来.图 2 实验系统示意图
Figure2. Schematic diagram of the experimental setup.
2
2.3.仿真方法
数值仿真基于FLUENT 19.2平台, 在长沙超算上计算. 采用基于压力的求解器进行数值求解, 时间项采用一阶隐式格式, 连续方程及动量方程的离散采用二阶迎风格式, 压力速度耦合方式采用PISO算法. 多相流模型采用VOF TO DPM模型, 详细机理参考文献[37]. 湍流模型采用带旋流修正的Realizable k-ε[38], 在强流线弯曲、漩涡、流动分离方面具有良好的表现. 仿真的计算域如图3所示. X方向为流向, Y方向为径向, Z方向为展向. 气相为质量流量入口, 液相为速度入口. 网格尺度为0.2 mm (约0.15D, D为液体射流喷孔直径), 采用3级八叉树网格自适应加密, 初始网格为140万, 自适应后期约为600万, 如图4所示, 加密后的最小网格尺寸为0.025 mm (约0.02D), 在该网格尺度下能够捕捉到射流破碎的细节, 设置射流破碎后的液滴转化等效直径为0.05 mm, 为最小网格尺度的两倍, 保证射流破碎后的滴液能被转化为DPM粒子. VOF相转化为DPM粒子后当地的网格会被还原, 可以减少网格计算量, 提高计算效率.图 3 计算域
Figure3. Computational domain.
图 4 自适应加密后的网格
Figure4. Mesh after adaptive.
2
2.4.仿真工况
气膜的工况参数如表1所示, 液体射流的工况参数如表2所示, 设置6组不同的液体射流喷注速度. 在横向射流的研究中常采用的无量纲参数为动量通量比q = ρ1v12/(ρ2v22), 但其不能体现气膜的厚度, 因此本文采用局部动量比[22] (local momentum ratio, LMR)表示气体与液体的相对动量大小. 局部动量比定义为液体射流的动量比上等效宽度气膜的动量, 公式为总压/ MPa | 静压/ MPa | 质量流量/ (kg·s–1) | 速度/ (m·s–1) | 温 度/K | 膜厚/ mm |
0.2 | 0.1 | 0.02 | 315.4 | 300 | 3 |
表1气膜工况参数
Table1.Parameters of gas film.
密度/ (kg·m3) | 速度/ (m·s–1) | 孔径/ mm | 局部动量 比LMR |
998.2 | 12.5, 15.0, 17.5, 20.0, 22.5, 25.0 | 1.3 | 0.38, 0.55, 0.74, 0.97, 1.23, 1.52 |
表2液体射流工况参数
Table2.Parameters of liquid jets.
2
2.5.计算结果验证
实验拍摄LMR = 1.52的背景光图像如图5(b)所示, 液体射流在气膜的作用下弯曲变形, 射流表面产生不稳定波动, 随着不稳定波的增长, 液体射流破碎断裂. 图5(c)中红色部分为仿真结果的轮廓线, 可以看出仿真结果与实验结果符合得较好, 并且仿真捕获到了破碎后的液滴等细节, 说明仿真方法可行. 不稳定波波长的对比如图5(d)所示, 实验与仿真结果吻合得较好, 在射流临界破碎处的不稳定波长λ误差最大, 实验为4.6D, 仿真为4.2D, 误差为8.7%.图 5 (a) 仿真结果; (b) 实验结果; (c) 破碎图像对比; (d)不稳定波长对比
Figure5. (a) Simulation; (b) experiment; (c)comparison of breakup process; (d) comparison of unstable wavelength.
-->
3.1.液体横向射流的破碎过程
液体射流从圆孔喷出后与横向吹来的气膜相互作用, 在气膜气动力的作用下, 射流逐渐弯曲变形, 伴随着气液界面不稳定波的产生和发展, 液体射流向下游发展破碎成液丝及液滴. 图6(a), (b)分别是射流中心对称面的压力云图及速度云图, 从图中可以清晰地看到液体射流表面的不稳定波动. 气膜在射流近壁面受阻减速, 在射流前方形成局部高压区, 同时气膜绕过射流后发生流动分离, 射流后方存在低压区, 由此形成了一个垂直射流流向的气动力, 产生了一个与液体射流相界面垂直的加速度, 法向速度梯度导致R-T不稳定性产生[18,19], R-T不稳定性导致液体射流表面出现不稳定波. 这种存在于射流表面的不稳定波动通常称作表面波[28], 表面波随着射流流向发展, 振幅及波长不断增长, 液体射流被拉细变薄, 直到其表面张力无法抵抗气体作用力, 然后破碎, 破碎后的液体与连续射流脱离, 形成液丝带.图 6 (a) 压力云图; (b) 速度云图
Figure6. (a) Contour of pressure; (b) contour of velocity.
参考文献[39]中对横向射流的研究, 液体射流在气膜中的破碎过程主要体现出柱状破碎及表面破碎两种破碎模式. 不稳定波引起射流柱的破碎被称为柱状破碎, 不稳定波引起的液滴、液丝剥离破碎被称为表面破碎. 沿射流方向的不稳定波发展过程及柱状破碎过程如图7所示. 在t0时刻R-T不稳定波从近壁面的高压区附近产生; 经过0.12 ms后不稳定波的振幅及波长均增大; 经过0.24 ms后不稳定波达到临界破碎的波长, 不稳定波的波谷已经发生了部分的破碎, 同时新的R-T不稳定波又生成了; 经过0.36 ms后不稳定波的波谷处已经完全与连续射流断裂开, 破碎后的液丝呈带状分布. 不稳定波破碎的位置总是发生在波谷, 与刘楠[18]及徐胜利[17]的研究结论一致. 不稳定波波谷破碎的原理将在后面进行分析.
图 7 R-T不稳定波的发展过程 (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms
Figure7. The development of unsteady wave: (a) t0; (b) t0 + 0.12 ms; (c) t0 + 0.24 ms; (d) t0 + 0.36 ms.
将射流近壁面区放大如图8所示, 射流根部存在一段明显未变形的圆柱段高约为0.2D. 气膜的滞止点在圆柱段的上方, 高速的气流在此滞止, 形成局部高压区, 然后分为两路, 一路沿着射流表面流动, 一路在射流根部前端回流形成漩涡, 同样在射流根部的背风面也能看到漩涡, 如图8(b)所示. 圆柱段内未见到液滴从射流上剥落, 壁面附近气体速度较低, 气液作用力较小, 未能使液滴剥离. 圆柱段以外能清晰看见液滴从射流表面剥离. 并随着气流的绕流, 部分剥离的液滴向壁面附近输运. 类似于横向射流中观察到的拉丝现象[40].
图 8 (a)射流近壁面的流线图; (b) 射流近壁面的速度矢量图
Figure8. (a) Streamline diagram of jet near the wall; (b) velocity vector diagram of jet near the wall.
前面提到R-T表面波的破碎总是发生在波谷, 这与气膜的流动特性有关. 从前面的分析中得出射流的迎风面压强高, 而背风面压强低的结论, 气体总是有趋于从压强高的地方流向压强低的地方的动力. 当表面波发展到一定程度, 射流变薄变成液膜, 表面波波谷处的液膜维持其形状的表面张力不足以克服气流从高压区流向低压区的趋势, 则气流将会穿透液膜, 表面波波谷处发生破碎. 气流穿透表面波波谷的仿真如图9(a), 在实验中拍摄到了同样的表面波波谷破碎图像如图9(b).
图 9 气流穿透射流表面波波谷 (a)仿真; (b)实验
Figure9. The gas penetrate the trough of surface wave: (a) Simulation; (b) experiment.
柱状破碎是液体射流在气膜中破碎的主要模式, 除了柱状破碎外, 液体射流的另外一种破碎模式—表面破碎发生于整个液体射流的弯曲变形阶段. 气膜与射流之间的切向速度梯度是产生K-H不稳定性的主要原因. 射流中心对称面的高速气流沿射流表面偏转后, 仍然与低速的液体射流之间存在较大的速度梯度, 如图10(a)所示. 沿液体射流流向的速度梯度导致K-H不稳定波动的产生, K-H表面波在射流表面发展, 导致射流表面产生层状的褶皱, 随着表面凸起的褶皱变薄, 变薄的液膜破碎为液丝, 液丝破碎为液滴, 如图10(b)所示. 可以看出K-H表面波的尺度相对于R-T表面波的尺度更小, 在两者的共同作用下连续的液体射流逐渐破碎为液滴.
图 10 射流迎风面的液滴剥离
Figure10. Droplet striped from the windward surface of the jet.
除了气体沿射流流向偏转产生的切向速度梯度外, 气体从射流表面绕流同样会产生切向速度梯度, 导致沿展向的K-H不稳定波产生. 射流的横截面变形过程如图11所示, 在径向距离为0.2D上射流的截面仍然保持圆形, 表明该区域内射流受到的气液作用力小, 不足以使射流截面发生变形. 到0.5D位置, 受气液剪切的作用, 射流沿展向两侧变形, 射流表面有液膜凸起, 并伴随着液滴的剥离. 到1.0D的位置, 射流表面凸起的液膜被拉长, 射流沿展向的破碎加剧, 同时可以沿展向的表面波已经在射流横截面中产生. 从速度矢量图12中可以看出, 横截面上气体与射流之间存在切向速度梯度, 导致K-H表面波产生, 射流横截面的轮廓线出现了突起褶皱, 同时射流背风面存在两个方向相反的漩涡, 漩涡的存在使得凸起的液膜加速剥离射流表面. 当射流的运动距离沿径向到2.0D, 射流的横截面形状变为月牙型, 表面不稳定波清晰可见, 与文献[39]中的研究相似. 径向位置到3D时射流横截面形状已经完全变成了液膜, 表面波的振幅显著增大, 液体射流即将沿展向破碎.
图 11 射流横截面变形过程
Figure11. Deformation process of jet cross section
图 12 射流横截面(Y = 1.0D)的速度矢量图
Figure12. Velocity vector diagram of jet cross section (Y = 1.0D)
液体射流与气膜相互作用的流场流线如图13所示. 从图中可以看出, 气膜遇射流的阻碍后一部分偏转方向, 沿射流流向运动; 一部分在射流表面发生三维绕流, 在射流背风面形成复杂流动涡. 射流表面波发展到临界破碎波长后, 沿液体射流流向运动的气体穿透表面波波谷, 汇合入气膜主流中. 高速运动的气膜带动静止的周围环境气体, 在射流上方形成大的回流区. 气膜绕过射流后在后方形成了一对反转漩涡对, 其中靠近壁面的反转涡对比较小, 与文献[41]中横向射流的计算结果相似, 其原理都是气流经过射流表面后复杂的三维绕流造成的.
图 13 流场流线图
Figure13. Streamline of flow field.
液体射流在气膜中的破碎过程可以总结为图14所示的示意图. 液体射流从径向孔喷出后, 在气动力的作用下, 射流开始弯曲变形. 伴随着强烈的气液剪切, K-H表面波产生, 表面破碎开始发生, 液丝及液滴从射流表面剥离. 导致柱状破碎的R-T表面波也开始产生, R-T表面波随射流流向发展, 振幅和波长变大, 整个过程伴随着表面破碎的不断发生. 液丝液滴的剥离及表面波振幅变大使得液柱变薄变细, 维持液体形态的表面张力无法克服气动力的作用, 最终在R-T表面波波谷处发生柱状破碎. 柱状破碎后产生的液丝, 在往下游的发展过程中逐渐破碎为液滴.
图 14 液体射流破碎过程示意图
Figure14. Schematic diagram of liquid jet breaking process.
2
3.2.局部动量比LMR对破碎过程的影响
研究表明, 局部动量比对径向孔型针栓喷注器的喷雾分布具有重要影响[42], 其定义见(1)式. 所以本文通过改变局部动量比的方式研究工况参数对液体射流在气膜中破碎过程的影响. 不同LMR下的液体射流破碎形态如图15所示, 可以看出, 随着局部动量比的改变, 射流的破碎形态显著变化. 射流的连续段长度及射流的倾斜程度随着局部动量比的增大而增大. LMR较低时, 射流的破碎发生在壁面附近, 部分破碎的液丝及液滴跟随气膜的绕流向壁面输运, 射流表面的R-T表面波还未完全成形, 射流就已经完全破碎成液丝及液滴, 如图15(a)所示, 此时主导射流破碎的是K-H不稳定性. 随着LMR增大, R-T不稳定性逐渐占据主导地位, R-T表面波随射流流向发展, 直到气流穿透表面波波谷, 射流发生柱状破碎, 如图15(b)和图15(c)所示. 随着LMR进一步增大, 射流表面的R-T表面波增多, 由于破碎位置更远, 射流表面能够同时存在更多的表面波; LMR增大后, 液体射流相对气膜的动量增大, 尽管气流已经穿透射流表面波波谷, 射流柱仍然未完全破碎, 如图15(e)和图15(f)所示.图 15 不同LMR下的射流破碎过程 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52
Figure15. Breakup process of liquid jet under different LMR: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52.
将未破碎的最大R-T表面波波长定义为λ, 计算方法如图16中插图所示. 在LMR = 0.38时λ约为1.7D; 随着LMR增大, λ呈线性增大, 当LMR = 0.74时, λ约4.3D; 当LMR继续增大时λ趋于不变. λ随LMR变化规律的本质原因还是气液的相互作用. LMR较低时, R-T表面波产生后不久射流就在K-H不稳定性的主导下破碎, 因此λ值较低. 随着LMR增大, R-T不稳定性的影响逐渐在增强, K-H不稳定性的影响逐渐减弱, 因此λ值逐渐增大. 当LMR大于0.74后, 射流的破碎完全由R-T不稳定性主导, 因此λ值趋于不变. 射流近壁面区的压力云图如图17所示, 可以看出LMR = 0.38时射流前方的高压区面积最小, 而LMR增大射流前方的高压区面积也增大, 表明射流前后压力差产生的法向加速度是R-T不稳定性的来源, 因此LMR = 0.38时R-T不稳定性的影响较弱.
图 16 不稳定波波长随LMR变化
Figure16. Unsteady wavelength vs. LMR.
图 17 射流近壁面的压力云图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74
Figure17. Pressure contour of jet near the wall: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74.
气膜与液体射流的相互作用是影响射流破碎过程的重要因素. 气膜的迹线如图18所示, 气膜的迹线代表气膜在一定时刻下的作用范围, 当LMR小于0.55时, 液体射流几乎被气膜包围, 液体射流的变形及破碎位置均发生在气膜作用范围内, 随着表面波的发展, 气膜穿透表面波波谷, 部分液丝逃离气膜作用范围. 当LMR增大至0.74及0.97时, 可以看到更多的液丝逃离气膜作用范围, 并且液体射流的破碎位置发生在气膜作用的边缘; 逃离出气膜的液丝受的气动力减弱, 使其能够保持液丝形态运动更远的距离. 当LMR继续增大, 液体射流的破碎位置远离气膜作用范围, 气膜受到射流的阻碍后, 部分气体沿射流表面运动, 但很快经过绕流回到气膜主流区.
图 18 气膜迹线图 (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52
Figure18. Streamline of gas film: (a) LMR = 0.38; (b) LMR = 0.55; (c) LMR = 0.74; (d) LMR = 0.97; (e) LMR = 1.23; (f) LMR = 1.52
破碎长度是射流破碎的重要特征参数, 将X方向(流向)及Y方向(径向)的破碎长度分别定义为流向破碎长度Lx和径向破碎长度Ly, 计算方法如图19(a)中插图所示, 取射流中心对称面上的相分数分布图判断射流发生柱状破碎的位置, 当对称面上的射流不连续时, 认为柱状破碎已经发生, 断裂点即为破碎位置, 破碎位置与射流喷孔中心之间的距离为破碎长度[43]. 图19(a)显示了破碎长度随时间的变化趋势, Lx和Ly均保持在一定偏差范围内变化, 计算该段时间内的Lx和Ly的平均破碎长度, 可得破碎长度随LMR的变化趋势如图19(b)所示. LMR越大, 射流相对气膜的动量越高, 射流越难破碎, 破碎位置也越远. Lx和Ly均随LMR的增大而增大, 但Ly增加的速率更快, 原因是LMR越大射流也变得越倾斜, 如图15所示, 使得Ly占的分量增加.
图 19 (a) 破碎长度随时间变化(LMR = 1.23); (b) 破碎长度随LMR变化
Figure19. (a) Breakup length with flow time (LMR = 1.23); (b) breakup length with different LMR
穿透深度和展向扩张角是体现射流破碎分布范围的重要参数. 穿透深度的提取方法如图20(a)中插图所示, 将不同时刻的射流破碎图像叠加在一起, 最外侧的轮廓线定义为穿透深度. 从图20(a)中可以看出, LMR是影响射流穿透深度的主要因素, 射流穿透深度随LMR的增大而增大. 在相同来流条件下, LMR越大意味着液体射流的喷注速度越大, 更能抵抗气动力导致的射流弯曲变形, 因此具有更大的穿透深度. 特别地当LMR从0.55增大到0.74时, 穿透深度显著增大, 从前面的分析知道, 当LMR等于0.74时液体射流已经穿透气膜的作用范围, 射流穿透气膜后受到的气动力显著减小, 因此穿透深度显著增大.
图 20 (a) 穿透深度随LMR变化; (b) 展向扩张角随LMR变化
Figure20. (a) Penetration depth vs. LMR; (b) spray spread angle vs. LMR.
展向扩张角的定义如图20(b)中插图所示, 在俯视图上射流展向边界渐近线的夹角θ为展向扩张角, 从图中可以看出LMR对射流展向扩展角影响不大. 液体射流的展向变形及破碎主要受气膜与射流之间的气液剪切力影响, 本文中不同LMR下气膜的速度相同, 而射流的在展向的投影速度较低可以忽略不计, 从而不同LMR之间展向的气液剪切力差别不大, 故展向扩张角没有明显变化.