删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一个可靠和准确的光电产额谱模型及应用

本站小编 Free考研考试/2021-12-29

闂傚倷鑳堕幊鎾绘偤閵娾晛绀夐柟鐑樻⒐鐎氬鏌i弮鍌氬妺閻庢碍宀搁弻娑樷枎瀹ュ懎濮庨梺杞拌閺呯娀骞冪捄琛℃閺夊牃鏅涚敮銊х磽娴d粙鍝虹紒璇茬墕閻e嘲顫濈捄鍝勮€块梺鍝勬储閸ㄥ宕i幇鐗堢厽闁绘ê寮堕幖鎰熆瑜岀划娆撳春閵忋倖鍤冮柍鍝勫€搁惃顐︽⒑閸涘﹥澶勯柛鎾村哺閹﹢骞囬悧鍫氭嫼闂佸憡鎸嗛崘褍顥氶梺姹囧焺閸ㄤ即顢氶鐔侯洸闁告稑锕ョ紞鍥ㄣ亜閹扳晛鐏╂鐐差儔濮婃椽宕楅悡搴″Б闂佹悶鍨肩亸顏堝Φ閹扮増鏅搁柨鐕傛嫹40%闂傚倷绀佸﹢杈╁垝椤栫偛绀夐柡宥庡幖閸ㄥ倹鎱ㄥΟ鍧楀摵閻忓繐瀛╅幈銊ノ熼崹顔惧帿闁诲繐娴氭禍顏堝蓟閵娿儮妲堥柧蹇e亜椤忥拷
闂傚倷娴囬~澶嬬娴犲绀夌€光偓閳ь剛鍒掔拠宸悑闁搞儯鍔岄惃顐⑩攽椤旇褰掑春閺嶎偂鐒婃い蹇撶墛閻撴稑顭跨捄鐚村伐闁哄棛鍠愮换娑欏緞濡搫绫嶆繝纰樺墲閹稿啿鐣烽幒鎴旀斀闁归偊鍓氶鏇炩攽閻愬樊鍤熷┑顖氼嚟缁辩偤鍩€椤掑嫭鐓忛柛鈩冾殔閺嗭絿鈧娲╃紞渚€銆佸☉銏″€烽柍杞版婢规洖鈹戦鐭亞澹曢鐘典笉闁哄稁鐏愰悷鎵冲牚闁告洦鍋嗛鍕箾鐎电ǹ孝闁绘绻掑Σ鎰板籍閸繄顓洪梺缁樏悘姘跺箚閿濆鈷掑〒姘搐娴滄繈鏌$仦璇插婵炲棎鍨介幃娆戔偓鐢电《閺嬫牠姊虹紒妯虹仸閽冮亶鏌熼悿顖欏惈缂佽鲸甯″顕€鍩€椤掑嫭鍋¢柨鏃傚亾閺嗘粎鎲搁悧鍫濈鐎规挷绶氶弻娑⑩€﹂幋婵囩彯闂佸憡鑹鹃幊搴ㄦ箒闂佸吋绁撮弲娑溾叴闂備線鈧偛鑻晶顖炴⒑閼恒儱鈷奝婵犵數鍋炲ḿ娆撳触鐎n喗鍤屽Δ锝呭暙缁犵喖鏌熼幆鐗堫棄闁诲繗娅曠换婵嬪垂椤愶絽鏆楃紓浣插亾濠㈣埖鍔栭悡鐔兼煃瑜滈崜娆愪繆娴犲鐓曢柍鍝勫€诲ú鎾煛鐏炶姤鍣规い顐g箓閻g兘宕堕埡鍐╂瘒闂備浇宕垫慨鏉懨洪妶鍫涗汗闁绘劕鎼懜瑙勩亜閹烘垵鈧綊宕戝鈧弻鏇熺箾瑜嶇€氼噣寮抽悩缁樷拺闁告稑锕ょ粭鎺撲繆椤愶絾顥堟俊顐㈡嚇閸╋繝宕ㄩ鎯у及闂備胶绮崝锕傚礈濞嗘劕绶炵€广儱顦伴悡娆撴倵濞戞瑡缂氬褜鍓熼弻鐔兼儌閸濄儳袦濡ょ姷鍋涢柊锝嗕繆閻戣棄惟闁靛濡囨禍宄扳攽閻愭潙鐏︽慨濠勬嚀椤灝顫滈埀顒勭嵁閸愩剮鏃堝川椤旇姤鐝柣搴″帨閸嬫捇鏌涢幇顓炲姢婵炲牏鍋撶换娑氣偓鐢登归鎾剁磽瀹ヤ礁浜鹃梻渚€娼уΛ妤呭疮閹绢喖绠犻柕蹇曞Х閺嗗鏌℃径搴㈢《闁诡噯鎷�40%闂傚倷绀佸﹢杈╁垝椤栫偛绀夐柡宥庡幖閸ㄥ倹鎱ㄥΟ鎸庣【鏉╂繈姊虹粙鎸庢拱缂佽绉瑰畷鐢告晝閳ь剟婀侀梺缁樼懃閹虫劗绮旈鍕厪闁糕剝顨呴弳鐔兼煙瀹勬壆绉烘い銏∶埞鎴﹀炊瑜滄导鍡涙⒒娴e憡鎯堥柣妤佺矒瀹曟粌鈽夐姀鈥充户濡炪倖鐗楃粙鎾汇€呴悜鑺ュ仯濞达絽鎽滈敍宥囩磼婢跺﹦浠㈤棁澶嬬節瑜忔慨鎾疮椤栫偛绠氶柛宀€鍋為悡銉︾箾閹寸們鍦偓姘卞缁绘盯鎮℃惔鈽嗗妷缂備礁鍊哥粔褰掋€侀弴銏狀潊闁绘ḿ鏁歌ⅲ9闂傚倷鑳堕、濠囧春閺嶎剙缍橀梻渚€鈧偛鑻晶顕€鏌涙繝鍐╁€愰柟顖氬暣婵偓闁靛牆鎳愰ˇ顐︽⒑缁洖澧叉繛鑼枛閹繝鍩¢崨顔规嫼闂佸憡鎸嗛崘褍顥氶梺姹囧焺閸ㄩ亶骞愰搹顐$箚閻庢稒蓱婵挳鎮峰▎蹇擃仼闂傚偆鍨跺铏规兜閸涱垰鐗氶梺绋块瀹曨剟婀佸┑顔姐仜閸嬫捇鏌熼銊ユ搐閻愬﹪鏌嶉崫鍕殲闁诡垽缍佸娲箰鎼达絺妲堥梺鍏兼た閸ㄧ敻濡甸幇鏉跨<闁绘劘灏欓ˇ顐︽⒑閸濆嫷妲规い鎴炵懇瀹曟繈宕ㄧ€涙ḿ鍘搁悗瑙勬尰閸濆酣宕愰妶澶婄柈闁割偁鍎查悡鏇犳喐鎼达絿鐭欓煫鍥ㄧ☉閻掑灚銇勯幋锝呭姷闁稿繐鏈换娑㈠川椤愩垹顬夐梺璇″灡濡啴寮崘鈺傚缂佸娉曟禒顓㈡⒒娴e憡鍟為柣銊︾矋閹峰懘骞撻幒宥咁棜濠电偠鎻紞渚€寮查懠顒冨С闁规儼濮ら悡鏇熶繆閵堝嫮顦﹂柟鍏兼倐閺屽秷顧侀柛蹇旂〒缁牊鎷呴崷顓ф锤闂佸搫娲ㄩ崰鎾诲煘瀹ュ绠抽柟鎯版閻掑灚銇勯幋婵堜虎闁稿﹥妲嬬紓鍌氬€风粈渚€寮甸鈧—鍐寠婢光晜鐩畷绋课旈埀顒冪箽濠电偠鎻紞鈧繛鍜冪秮瀹曪綁鍩€椤掍胶绠鹃柟瀵稿仦閻撱儳绱掗妸锔姐仢闁糕斁鍋撳銈嗗灦鐎笛呯矈娴煎瓨鐓熸い蹇撴噺鐏忥箓鏌熼鑺ャ仢闁轰焦鍔欏畷鍫曞煛閸屾稑鍔橀梻鍌欑閹诧繝鎳濋崜褉鍋撳鐓庡⒋濠碉紕鏁诲畷鍫曨敆閸屾氨銈﹂梻浣告啞閸旀牞銇愰崘顔界厐闂侇剙绉甸悡蹇涙煕閳藉棗骞楅悗姘炬嫹
摘要:光电产额谱的实验和理论研究对所有涉及光电的材料和器件都很重要, 其中能够准确地从入射光子能量计算光电产额对最大限度地从光电产额谱获取光电材料和器件的电性能的微观信息至关重要. 本文在建立起光电产额谱满足的微分方程结合光电产额谱的特有实验结果之后找到了这个满足光电产额谱的特有实验结果下微分方程的解. 通过对实验数据进行最小二乘法非线性拟合既验证了这种方法获得的光电产额谱模型的正确性, 也得到了每一条光电产额谱的具体数学表达. 应用此模型不仅能尽可能精确可靠地计算出两种电性能略有不同的物质相互接触形成结的势垒高度, 而且由这个光电产额谱模型能够得到在结中的电子有效占有态的密度能级分布.
关键词: 光电产额谱/
光子能量/
模型/
结势垒高度

English Abstract


--> --> -->
经过十几年的不断努力和探索, 1887年赫兹(Hertz)[1]终于发现了麦克斯韦电磁理论预言的电磁波, 同时他还偶然发现了光电效应(photoelectric effect)现象. 1905年, 在充分理解足够的光电效应实验结果的基础上, 爱因斯坦(Einstein)[2]创见性地提出了光子的概念, 通过电子一次性地吸收具有能量为的光子, 从而出现实验所观察到的光电流. 爱因斯坦著名的光电效应方程从数学上表达了这个思想, 这样既定性又定量地回答了为什么有截止电压, 同时定性和定量给出了临界(红限)频率ν0的来源并因此获得诺贝尔奖. 使得物理学界终于从经典物理理论不能解释光电效应实验规律的困境中解脱出来. 密立根(Millikan)[3]在实验验证爱因斯坦的光电效应方程时, 由不同频率的光照射在给定阴极材料上产生的光电流随阴、阳极间电压变化的电流-电压即I-V曲线找到截止电压. 从截止电压同入射光频率的关系得到了临界(红限)频率, 即逸出功和普朗克常量. 当然, 密立根也由此获得诺贝尔奖. 爱因斯坦光电效应方程和密立根光电流-电压关系成为常用的测量金属逸出功和普朗克常量的方法. 不过, 正确地从光电流-电压找到截止电压并不简单. 在量子力学中自然地产生了光电产额(发射电子数同入射光子数之比, Y)的提法, 而这个光电产额是随着入射光能量变化的, 即光电产额谱. 在逸出功处光电产额为零. 这样, 光电产额谱又成为测量金属逸出功的一种方法. 福勒(Fowler)[4]从费米-狄拉克统计出发建立了一个光电产额谱的近似公式(福勒级数). 于是, 应用光电产额谱测量了许多金属逸出功[5]. 在元素周期表中许多金属逸出功是由光电效应测量的[6]. 两种电性能略有不同的物质相互接触就形成了结, 光与结相互作用可以产生一种能量转移的现象, 即光照射到结上, 引起结的电性质发生变化, 也就是光能量转换成电能. 这类在结光致电变的现象被人们称为内光电效应: 内光电效应是光激发产生的载流子(自由电子或空穴) 仍在物质内部运动产生光生伏特 (photovoltaic effect). 产生光伏现象最常用的是n型和p型半导体形成的结, 贝尔(Bell)实验室研究人员Chapin等[7]报道的4.5%效率的单晶硅太阳能电池的发现开启了太阳能电池应用之路. 光电产额谱是每一个新研制的太阳能电池必测项目. 固相接触有欧姆接触(Ohmic contact) 和肖特基(Schottky)接触之分, 当p型半导体的禁带宽度(Eg)同其电子亲和势能(χ)之和大于金属的逸出功(W)时, 就是肖特基接触(结). 而金属的逸出功大于p型半导体的禁带宽度同其电子亲和势能之和时, 则为欧姆接触(结)[8]. 内光电效应提供了绝大多数光电器件及系统的基本原理. 由于结是通过金属、半导体、绝缘体中任意两个组成的界面系统, 对此界面而言光电产额谱起到重要的作用. 用光电产额谱能够对结的电结构进行分析[9], 用光电产额谱可以测量结中的狄拉克缺陷及费米能级[10], 应用光电产额谱能研究结中的能带偏移[11], 从光电产额谱能够获取结中的缺陷密度在能级的分布[12], 光电产额谱还能用来探索价带剖面[13]. 不同物质形成的结有界面, 由于界面的存在就有了势垒, 因为光电产额在势垒高度处是零, 故确定这个势垒高度的常用方法是光电产额谱[14,15]. 由于有了能够精确刻度入射单色光能量和光强(单位面积上的入射光功率)的激光和准确测量光电流密度(单位面积上的电流强度)的仪器, 现在获得光电产额谱已经相当容易. 可惜在国内刊物上除了太阳能电池很少能看到光电产额谱方面的报道.
由上述可见, 精确地定量描述入射光的能量和光电产额对可靠地使用光电产额谱非常重要. 到目前为止, 所有发表的文献都认可入射光的能量$h\nu $和光电产额(Y)的定量关系是Y${(h\nu - \varphi )^n}$成正比[14-19], 这里$\varphi $是结的势垒高度, 而n为一个正整数. 对于金属-绝缘体异质结, n规定为2; 而对于绝缘体-半导体异质结, n是3. 由此以光的能量$h\nu $为横轴, Y1/2或者Y1/3为因变量, 认为Y1/2或者Y1/3随光能量$h\nu $是直线变化的, 而这条直线在能量$h\nu $轴上的交点就是结的势垒高度. 但是, 只有少数的实验结果表明结内光电产额的平方根或者立方根随光的能量线性变化. 于是在光能量和光电产额的平方根或者立方根散点图中取尽可能多的在一条直线上的实验点, 用这条直线与能量轴的交点决定结的势垒高度. 虽然这种光电产额-入射光能量法给出了不敏感于温度的结本征势垒高度, 但是这样并不能得到可靠性比较高的势垒高度.
为能通过光电产额谱得到更加精确和可靠的势垒高度、结的电结构、结中的能带偏移缺陷密度在能级的分布、价带剖面, 本文通过微分方程的解和光电产额谱的特有实验结果建立了一个可靠和准确的光电产额谱模型. 提出一个利用内电流产额Y随光子能量变化的实验结果自然确定结势垒高度的方法, 应用此方法不仅能尽可能精确可靠地计算出结势垒高度, 而且由这个光电产额谱模型得到了四个结的电子有效占有态的密度能级分布, 初步展示了这个光电产额谱模型的应用前景.
测量了光电流密度(J)和能量为$h\nu $的入射单色光的光强(S, W/m2)后可由下式计算光电产额:
$Y = \frac{{J \cdot h\nu }}{{e \cdot S}},$
这里e是电子的电量. 为了获得清洁金属的光电流同入射单色光的能量的定量关系, 福勒[4]从费米-狄拉克统计出发首先得到了光电流的如下准确表达式:
$I\! =\! A\frac{{2{\rm{\pi }}kT}}{m}\sqrt {\frac{{2kT}}{m}} {\left( {\frac{m}{h}} \right)^3}\!\!\int_0^\infty {\frac{{\lg [1 + {{\rm{e}}^{((h\nu - e\varphi ) - y)}}]}}{{\sqrt {y + (e{\varphi _0} - h\nu )kT} }}} {\rm{d}}y,$
式中A是常数, k为玻尔兹曼常量, T是绝对温度, m为电子的质量, h为普朗克常量, $e\varphi $是金属的逸出功, $e{\varphi _0}$一个非常接近金属的逸出功的量. 到目前也得不到(2)式中的积分, 福勒对被积函数应用级数展开得到了(3)式的光电流
$\begin{split}I\left( {\nu,T} \right) =\;&\frac{{A{T^2}}}{{\sqrt {e{\varphi _0} - h\nu } }}\Bigg[ \frac{{{{\rm{\pi }}^2}}}{6} + \frac{1}{2}{{\left( {\frac{{h\nu - e\varphi }}{{kT}}} \right)}^2} \\&- \sum\limits_{j = 1}^n {\frac{{{{\left( { - 1} \right)}^{j - 1}}}}{{{j^2}}}\exp \left( { - {\rm{j}}\frac{{h\nu - e\varphi }}{{kT}}} \right)} \Bigg], \\& ~~\left. {\frac{{h\nu - e\varphi }}{{kT}} \geqslant 0} \right..\end{split}$
(3)式表示的级数称为福勒级数. 完全使用福勒级数对实验数据进行计算以得到逸出功是一个高强度的计算, 另外, 当福勒级数描述半导体GaN层时在相当大的范围无效[20]. 福勒及后来的****研究认为, 如果$h\nu - e\varphi \succ 3 kT$, 则光电产额(3)式能近似为
$Y = C{(h\nu - e\varphi )^n},$
式中对于金属-绝缘体异质结n规定为2; 而对于绝缘体-半导体异质结, n是3.
本文意在建立一个新的比(4)式更精确且简洁的光电产额谱模型. 光电产额谱的实验结果表明, 当入射光的能量小于等于结的势垒高度时, 光电产额是零. 由于光生非平衡载流子的输运导致光谱响应的大小与单位面积上的能量流密度和内建电场直接相关, 当入射光的能量高于结的势垒高度时, 入射光的能量越高, 则光电产额越大. 但是由光电产额的定义可知当入射光的能量高到一定程度时, 光电产额将达到等于1或者接近1的饱和值, 并在更高的光子能量范围内可能保持一定阶段饱和. 已有文献提示我们光电产额(Y)能够从下述微分方程及其满足上述实验结果为边界条件的解得到[21]:
$\left\{ \begin{aligned} &\frac{{{\rm{d}}Y}}{{{\rm{d}}(h\nu )}} = \frac{k}{{h\nu }}\left[ {1 - \frac{{Y(h\nu ) - {\alpha _1}}}{{{\alpha _2}}}} \right][{\alpha _1} - Y(h\nu )], \\& Y\left| {_{h\nu \to 0} = {Y_{{\rm{min}}}},} \right. \\& Y\left| {_{h\nu \to \infty } = {Y_{{\rm{sat}}}} \prec 1,} \right. \end{aligned} \right.$
这里Ysat是饱合光电产额, 最大的光电产额为1, Ymin则为最小光电产额, α1α2YsatYmin有关. 对(4)式进行积分并且考虑到前述实验结果的特征, 产生了(6)式描述的光电产额谱模型:
$Y(h\nu ) = {Y_{{\rm{sat}}}} + \frac{{{Y_{\min }} - {Y_{{\rm{sat}}}}}}{{1 + {{(h\nu /h{\nu _1})}^k}}}.$
模型(6)中$h{\nu _1}$是中心能量, 光电产额在$h{\nu _1}$取得平均值, $h{\nu _1}$也是光电产额谱的拐点能量, k为幂, k代表了光电产额增长速率.
用模型(6)对实验光电产额谱进行最小二乘法曲线拟合的回归分析就能检验模型(6)的正确性, 同时也可得到每一条光电产额谱的具体数学表达, 进而用这个具体数学表达获取结的定量电性能信息.
为检验模型(6)是否代表真实的光电产额谱实验结果, 首先使用模型(6)拟合光照面积为5 × 10–2 cm2的典型的绝缘体-半导体异质结MoS2/SiO2的光电产额谱[16], 及金属-绝缘体异质结HfO2/ZrCuAlNi(ZCAN)的光电产额谱[17]. MoS2/SiO2和HfO2/ZCAN的光电产额随着入射光子能量变化的实验结果已经发表[16,17]并在图1中给出, 通过对MoS2/SiO2及HfO2/ZCAN的光电产额谱实验结果进行模型(6)的曲线最小二乘法最佳拟合, 得到了优化参数和理论曲线(见图1表1). 作为对比, 图1也给出了MoS2/SiO2光电产额的立方根和HfO2/ZCAN的光电产额的平方根随入射光子能量变化的散点图. 由图1可见, 只有接近2/3的光电产额的立、平方根随入射光子能量成线性变化, 而在相同的范围内, 使用本文提出的模型所有的理论结果同实验点重合. 为了定量地衡量模型和实验值的预测准确度, 本文使用理论结果与实验结果之间的相关系数(R)和相对误差的平均值(相对误差平均值(ARE) = (100%实验数据对数目(n))${{\displaystyle {\sum }_{i=1}^{i=n}\left|{\text{实验值}}_{i}-{\text{理论值}}_{i}\right|/{\text{实验值}}_{i}}}$)作为定量指标以评价拟合结果, 表1列出了RARE.
图 1 实验和模型(6)模拟的MoS2/SiO2(半导体-绝缘体 (a), (c))和HfO2/ZCAN(金属-绝缘体(b), (d))异质结内光电产额(Y)作为入射光能量函数的结果及Y1/3Y1/2随入射光能量的变化图
Figure1. $\sqrt[n]{Y} - h\nu $and $Y - h\nu $ curves comparison between measurement and simulation of MoS2/SiO2 ((a), (c)) and HfO2/ZCAN ((b), (d)).

Ysat Ymin$h{\nu _1}$kRARE/%φ/eV
MoS2/SiO2 .68 –.0017 4.63 20.58 .999 2.3 3.46
HfO2/ ZCAN .53 –.0038 3.86 10.68 .999 1.5 2.43
Al.2Ga.3In.5P/Al.2Ga.8As .90 –4477.06 1.78 55.14 .999 3.4 1.52
单晶Si .39 –.0094 1.72 9.05 .998 3.8 1.14
P3HT .14 –.0066 1.94 67.82 .999 1.2 1.85
Graphene/SiO2 .22 –.049 4.75 26.94 .999 4.1 4.12
Pt/GaP .87 –.37 1.43 142.86 .999 3.7 1.41
R: 相关系数, ARE: 相对误差的平均值.


表1不同结中的优化参数和评价参数取值以及获得的势垒高度
Table1.The best parameters and evaluation parameters for different junctions, and calculated barrier height.

按照肖特基势垒高度的物理意义, 在肖特基势垒高度处光电产额应为零, 即:
$Y(e\varphi ) = 0 = {Y_{{\rm{sat}}}} + \frac{{{Y_{\min }} - {Y_{{\rm{sat}}}}}}{{1 + {{(e\varphi /h{\nu _1})}^k}}}.$
很容易得到方程(7)的解为
$e\varphi = h{\nu _1}\sqrt[\root{8}{k}]{{\frac{{ - {Y_{\min }}}}{{{Y_{{\rm{sat}}}}}}}}.$
表1列出了由最佳模拟参数获得的肖特基势垒高度, 显然, 这种理论计算的肖特基势垒高度比光电产额的立、平方根随入射光子能量散点几何外推获得的肖特基势垒高度要可靠和准确.
考察完模型(6)在描述由绝缘体同半导体及金属组成异质结的光电产额随光子能量变化的有效性后. 自然应当考察模型(6)对由半导体同半导体及半导体和金属组成异质结的光电产额随光子能量变化的有效性. 图2分别给出了光在2.1 eVAl0.2Ga0.3In0.5P和1.7 eV Al0.2Ga0.8As[18]组合的光照面积为0.1 cm2和面积为6.4 × 107 cm2的Pt/GaP产生的光电产额的实验结果[22], 同样对Al0.2Ga0.3In0.5P/Al0.2Ga0.8As和Pt/GaP的能量及光电产额实验结果进行模型(6)的曲线最小二乘法最佳拟合, 得到了表1中的优化参数. 同样, 图2也给出了Al0.2Ga0.3In0.5P/Al0.2Ga0.8As和Pt/GaP光电产额的平、立方根随入射光能量变化的散点图, 再一次可以看出, 理论结果同实验点重合的数据对明显多于光电产额的平方、立根同入射光能量在一条直线上的数据对. 应用表1中的最佳参数不难得到可靠而又准确的肖特基势垒高度. 这里Al0.2Ga0.3In0.5P/Al0.2Ga0.8As的肖特基势垒高度既低于Al0.2Ga0.3In0.5P的禁带宽度也低于Al0.2Ga0.8As的禁带宽度, 这个结果正是Al0.2Ga0.3In0.5P/Al0.2Ga0.8As成为效率到达47.1%的太阳能电池的一部分原因[18].
图 2 实验和模型(6)模拟的Al0.2Ga0.3In0.5P/Al0.2Ga0.8As(半导体-半导体 (a), (c))和Pt/GaP(金属-半导体, (b), (d))异质结内光电产额(Y)作为入射光能量函数的结果及Y1/3Y1/2随入射光能量变化图
Figure2. $\sqrt[n]{Y} \text- h\nu$ and $Y \text- h\nu$ plots of the experimental data and the theoretical fits in the form of Eq. (6) for both Al0.2Ga0.3In.5P/Al0.2Ga0.8As ((a), (c)) and Pt/GaP ((b), (d)) Schottky contacts.

最近报道了石墨烯/二氧化硅(Graphene/SiO2)的光电产额谱实验数据[19], 图3给出了石墨烯/二氧化硅光电产额谱实验曲线. 通过模型(6)对石墨烯/二氧化硅光电产额谱实验数据的曲线最小二乘法最佳拟合获得了表1中的数学表达式及结势垒高度, 图3也给出了能够最好地描述结Graphene/SiO2光电产额随入射光子能量变化规律的最佳参数的理论曲线. 由于报道的是石墨烯的逸出功[23], 图3描绘了石墨烯/二氧化硅光电产额立方根随入射光子能量变化的散点图, 可以看出理论结果同实验点重合的数据对明显多于光电产额的立方根同入射光子能量在一条直线上的数据对.
图 3 实验和模型(6)模拟的石墨烯/二氧化硅(Graphene/SiO2 (c), (d)), p型单晶硅(b)和有机半导体P3HT(a)光电产额(Y)作为入射光能量函数的结果及Y1/3随入射光能量变化图
Figure3. Experimental and theoretical IPE yield as a function of photon energy for Graphene/SiO2 ((c), (d)), P3HT (a) and p-type Si (b).

下面考察模型(6)在半导体光电产额谱的有效性, 图3分别给出了p型单晶硅[24]和有机半导体P3 HT(3-hexylthiophene)[25]的光电产额谱实验曲线. 同样, 模型(6)对p型单晶硅及有机半导体P3 HT的实验数据模拟得到了很好的图3中的理论曲线和优化参数(见表1). 从表1的优化参数计算的硅的禁带宽度同使用硅的吸收光谱获得的最精确的硅的禁带宽度完全一致[26], 而P3 HT的光电产额谱函数给出的禁带宽度仅比使用P3 HT的吸收光谱获得的最精确的禁带宽度少0.05 eV[27].
有了结的光电产额谱模型(6), 就能够从光电产额谱模型的第一导数得到如下的电子有效占有态的密度Nosd[28,29]:
${N_{{\rm{osd}}}} = \frac{1}{A}\frac{{{\rm{d}}Y}}{{{\rm{d}}(h\nu )}} = \frac{{{Y_{{\rm{sat}}}} - {Y_{\min }}}}{{A \cdot h{\nu _1}}} \cdot k\frac{{{{(h\nu /h{\nu _1})}^{k - 1}}}}{{{{[1 + {{(h\nu /h{\nu _1})}^k}]}^2}}},$
这里A为光照射面积. 根据文献照射光的能量减去结势垒高度给出了高于价带顶的能量[12], 图4给出了Pt/GaP, MoS2/SiO2, Al0.2Ga0.3In0.5P/ Al0.2Ga0.8As 和P3HT的电子有效占有态的密度能级分布(也可以表示成电子有效占有态的密度按照射光的能量分布[28]).
图 4 Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2 (c)和P3HT(d)电子有效占有态的密度按照能级(能量)分布
Figure4. Curves display the spectra of the effective density of the filled electronic states of the Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2 (c) and P3HT (d), as the first derivative of the recorded.

图4中Pt/GaP, MoS2/SiO2和P3HT电子有效占有态的密度能级分布呈现峰形, 如果对电子有效占有态的密度(9)式进行一次导数运算就有:
$\begin{split}&\qquad \frac{{\rm{d}}}{{{\rm{d}}(h\nu )}}{N_{{\rm{osd}}}}\left| {_{h{\nu _{\rm{p}}}}} \right. = 0\\ \;&= \frac{{\rm{d}}}{{{\rm{d}}(h\nu )}}\frac{{{Y_{{\rm{sat}}}} - {Y_{\min }}}}{{A \cdot h{\nu _1}}} \cdot k\frac{{{{(h\nu /h{\nu _1})}^{k - 1}}}}{{{{[1 + {{(h\nu /h{\nu _1})}^k}]}^2}}}\Bigg|_{h\nu {}_{\rm{p}}} \\ \;& =\frac{{({Y_{{\rm{sat}}}} - {Y_{\min }})}}{{A \cdot h\nu _1^2}}{\left( {\dfrac{{h\nu }}{{h{\nu _1}}}} \right)^{k - 1}}\times \\ &\dfrac{{(k - 1)\left( {\dfrac{{h{\nu _1}}}{{h\nu }}} \right)\Big[ {1 + {{\left( {\dfrac{{h\nu }}{{h{\nu _1}}}} \right)}^k}} \Big] - 2k{{\left( {\dfrac{{h\nu }}{{h{\nu _1}}}} \right)}^{k - 1}}}}{{{{[1 + {{(h\nu /h{\nu _1})}^k}]}^3}}}\Bigg| _{h{\nu _{\rm{p}}}} \end{split}.$
除了照射光子能量为零的解以外, 电子有效占有态密度的峰位置是:
$h{\nu _{\rm{p}}} = h{\nu _1} \cdot \sqrt[k]{{(k - 1)/(k + 1)}}.$
可以说电子有效占有态的密度峰位置基本上同$h{\nu _1}$重合. 图4表明在禁带范围绝大多数电子占据在价带顶附近, 这符合能带理论中电子分布特征的结论.
光电产额谱的理论和实验研究是涉及光电器件和材料的重要内容, 而能够准确地从入射光能量计算光电产额对最大限度地从光电产额谱获取光电器件和材料的电性能的微观信息无疑至关重要. 旨在可靠和更精确地建立光电产额谱的理论, 本文在找到光电产额谱满足的微分方程并结合光电产额谱的特有实验结果之后得到了这个满足光电产额谱的特有实验结果下微分方程的解. 应用本文所提供的模型分别用已获得的光电产额-入射光能量实验谱数据进行最小二乘法曲线拟合不仅验证了这种方法获得的光电产额谱模型的正确性, 而且得到了7个材料光电产额谱的具体数学表达. 应用此模型不仅能精确可靠地计算出两种电性能略有不同的物质相互接触形成结的势垒高度, 而且应用这个光电产额谱模型能够得到在结中的电子有效占有态密度的能级分布. 由于现代计算机的普及加上科技数据分析处理软件的丰富, 可以认为本文所提供的方法能够非常精确、方便、快速地获取光电产额谱的知识. 人类已经具备了许多界面系统的电性能知识, 随着时间的推移, 将会有更多的新光电器件及材料出现. 相信该方法能在探知新界面材料的电性能知识方面发挥积极的作用.
闂備浇宕甸崰鎰洪幋锔藉€块柨鏃傛櫕閻濊埖鎱ㄥ璇蹭壕闂佺娅曢幑鍥х暦濮椻偓椤㈡棃宕卞Δ鍐ㄥ箰闂傚倷绀侀崥瀣熆濮椻偓瀹曨垶顢曢姀銏℃闂侀潧顧€婵″洭鍩㈤弮鍫熺厵闁硅鍔曢惃娲煟閻旈绉洪柟顔肩秺瀹曟儼顦查柍閿嬫⒐缁绘繈鍩€椤掑嫬鐒洪柛鎰硶閻鈹戦埥鍡楃仯缁绢厼鐖煎畷鎴﹀箻鐎靛摜鎳濋梺閫炲苯澧撮柕鍡楀€块幊鐐哄Ψ閿曗偓閸斿懘姊洪崷顓炰壕濠⒀冮叄瀹曟垿骞樼€涙ê顎撶紓浣圭☉椤戝棛绱炴繝鍐х箚妞ゆ劑鍊曢。濂告煕閳轰緤鍔熸俊鍙夊姍瀹曞綊顢曢敐鍕攭婵犵數鍋涘Λ娆撳箰缁嬪簱鏋嶉柨鐔哄У閸嬶絿鎲稿鍥e亾濮樼厧骞橀柤娲憾椤㈡瑩鎮欓浣稿姎闂備礁鎲℃笟妤呭储閻撳寒鍤曢柛褎顨嗛悡銉︾箾閹寸儐娈樻い锔奸檮缁绘繈鍩€椤掑嫷鏁傞柛鈩冪懄閿涘繘姊洪崜鑼帥闁哥姵鐗滈弫顕€骞庨懞銉ヤ化闂佸綊鍋婇崜娑氱矓閻戞ü绻嗛柟缁樺笒椤忣偊鏌熸搴⌒i悗鐢靛帶閳诲酣骞嬮悪鍛簥
2婵犵數鍋為崹鍫曞箰缁嬫5娲Ω閳哄绋忛梺鍦劋椤ㄥ棝宕甸埀顒勬⒑閸涘﹤濮﹀ù婊呭仱瀹曟椽鏁撻悩宕囧幘闂佸搫顦悘婵嬪汲濞嗘垟鍋撶憴鍕8闁稿海鏁婚獮鍐╃鐎n偒妫冨┑鐐村灦绾板秹骞夐妶鍡欑闁瑰鍋為ˉ鏍偣娓氬﹦鎮兼俊鍙夊姇閳诲酣骞囬崜浣虹厬婵犵妲呴崹闈涒枍閿濆拋娼╅柕濞炬櫆閻撳繘鏌涢埄鍐╃缂佷胶澧楅妵鍕敃閵忊晛鍓遍梺鎸庣⊕閸旀瑩鐛€n亖鏋庨悘鐐村灊婢规洘绻涙潏鍓ф偧閺嬵亞鈧鍠栭悘婵嬪煘閹达箑纾兼繛鎴i哺閻g晫绱撴担椋庤窗闁稿锕ら锝夘敆閳ь剟鍩㈡惔鈾€鏋庨柟瀵稿濡叉挳姊绘担鍛婂暈闁荤喆鍎甸弫鍐Χ閸滀礁鏅犳繝鐢靛У濮樸劌鐣垫笟鈧幃妤呮濞戞瑥鏆堥梺绯曟櫅閸婃瓕鐏嬮梺缁橆殔閻楃偤宕楅鍌滅<閺夊牄鍔庣粻鎾绘煃閽樺妯€闁诡喕绮欏畷褰掝敃閵堝繒鐭�547闂傚倷绀佸﹢閬嶃€傛禒瀣;闁瑰墽绮埛鎺楁煕閺囨娅呴柣蹇d邯閺岋絽螖鐎n偄顏�4婵犵數鍋為崹鍫曞箰缁嬫5娲晲閸モ晝顦梺鐟邦嚟閸嬬喖鍩㈤弮鈧妵鍕疀閹惧顦遍梺绋款儐閹瑰洤鐣峰鈧、鏃堝幢濡ゅ啫骞愰梻鍌欑閸氬顭垮鈧畷顖烆敃閵忋垺娈鹃梺闈涱檧婵″洭鍩㈤弮鍫熺厵闁硅鍔曢惃娲煟閻旈攱璐$紒杈ㄥ笚瀵板嫮鈧綆浜炴禒鐓庘攽閻愯泛绱﹂柛妤勬珪娣囧﹦鈧稒蓱婵挳鎮峰▎娆戝埌濞存粓绠栭弻娑㈠箛閸忓摜鏁栭梺绯曟櫔缁绘繈寮诲☉婊呯杸闁挎繂鎳庨~鈺呮⒑閸涘﹦鎳曠紒杈ㄦ礋楠炲繘鎮╃拠鑼啋闂佸憡渚楅崹鎶剿囬埡鍛拺閻炴稈鈧厖澹曢梻浣告贡鏋紒銊ㄥ亹缁厽寰勯幇顓犲幘闂佸搫瀚换鎺旇姳閹稿簺浜滈柡鍥悘鑼偓娈垮櫘閸嬪﹤顕g捄琛℃瀻闁诡垎鍏俱倝姊绘担鐟邦嚋缂佸鍨胯棟妞ゆ挶鍨归悞鍨亜閹烘埊鏀婚悗姘炬嫹40缂傚倸鍊风粈渚€藝椤栨粎鐭撶€规洖娲ㄧ粻鏃堟煙閹屽殶闁崇粯姊归幈銊ヮ潨閳ь剛娑甸幖浣告瀬閻庯綆浜堕悢鍡涙偣閸ワ絺鍋撻崗鍛棜缂傚倷娴囨ご鎼佹偡閳哄懎钃熺€光偓閸曨偆顓洪梺鎸庣箓濞茬娀宕戦幘缁樻優閻熸瑥瀚崢褰掓⒑閸濆嫭宸濋柛搴㈠灩濡叉劕饪伴崼鐔哄帾闂佺硶鍓濆ú鏍姳缁寬闂傚倷绶氬ḿ褍螞閺冨倻鐭嗗ù锝堫嚉閻熸嫈鏃堝川椤旇瀵栭梻浣告啞娓氭宕㈤挊澶嗘瀺鐎光偓閸曨剛鍘遍梺鍝勫暞閹稿墽澹曢幐搴涗簻闁靛骏绱曢。鑼磼閺冨倸鏋涙い銏℃礋閹晠顢曢~顓烆棜濠电偠鎻紞鈧い顐㈩樀閹繝鍩€椤掑嫭鈷掗柛灞捐壘閳ь兛绮欓、娆愮節閸曨剦娼熼梺鍓插亝濞叉牜绮荤紒妯镐簻闁规崘娉涢宀勬煛娴e壊鍎忔い顓℃硶閹风娀鍨鹃崗鍛寜闂備線鈧偛鑻崢鎼佹煠閸愯尙鍩e┑锛勬暬閹瑩寮堕幋顓炴婵犳鍠楅敃鈺呭礂濞戞碍顫曢柨婵嗘偪瑜版帗鏅查柛鈩冪懅閻撳倸顪冮妶鍐ㄧ仾缁炬澘绉剁划鈺呮偄绾拌鲸鏅濋梺闈涚墕濞诧箓骞嗛敐澶嬧拺闁圭ǹ娴烽埥澶嬨亜閿旇寮柛鈹惧亾濡炪倖甯掗敃銉р偓姘炬嫹28缂傚倸鍊风欢锟犲磻婢舵劦鏁嬬憸鏃堢嵁閸愵喖绠婚柛鎾茬窔閳瑰繑绻濋姀锝嗙【妤楊亝鎸冲畷婵嬪川鐎涙ḿ鍘遍梺鍝勫暊閸嬫挾绱掔€n偅宕岀€殿噮鍋婇幃浠嬪垂椤愩垹骞戦梻浣告惈濞诧箑顫濋妸鈺傚仭闁宠桨璁插Σ鍫ユ煙閻愵剚缍戦柟鍏兼倐閺屽秷顧侀柛鎾卞姂楠炲繘鏁撻敓锟�1130缂傚倸鍊风粈渚€藝椤栨粎鐭撻柛鎾茬閸ㄦ繈鏌ㄩ悢鍝勑㈢紒鈧崒鐐寸厱婵炴垶锕弨缁樼箾閸繄鐒搁柡灞稿墲瀵板嫮鈧綆浜滈~鍥⒑闁偛鑻晶顕€鏌涙繝鍕殌閾荤偤鏌曢崼婵囧濠殿垰銈搁弻锝夊箣閻忔椿浜濈粋宥夊醇閺囩喓鍘搁梺鍛婃礋濞佳囨倶閿濆棛绡€闁逞屽墴閸╁嫰宕樼捄銊х厬婵犵妲呴崹闈涚暦闂堟侗鍟呮繝闈涚墢绾捐棄霉閿濆毥褰掑汲閺冨牊鐓冪憸婊堝礂濞戞碍顐芥慨妯跨堪閳ь剙鍊块幊鐐哄Ψ閿曗偓閸斿懘姊虹憴鍕姢闁哥喎娼¢幃锟犲即閻愬秵鐩幃褔宕奸鈧崣鏇犵磽娴d粙鍝虹紒璇插暙宀h法鎷犻崣鍌滃枔缁辨帒螣閻戝洨鐣辨い顓℃硶閹瑰嫰鎼归崜鎰剁磿缁辨帡鍨鹃崘宸純閻庢鍣崑鍕煝鎼淬劌绠涙い鎾跺Х閳诲矂姊绘担鐟邦嚋缂佸鍨剁缓浠嬪籍閸屾粌宕ラ柣搴㈢⊕宀e潡鍩㈤弮鍫熺厽婵﹩鍓氶~婕冩繝鐢靛仦濞兼瑩宕ョ€n喗鍤屽Δ锝呭暙缁犵喖鏌熼幆鐗堫棄闂佽¥鍊濋弻娑㈠Ψ閹存繂鏆㈡い鏂款槸閳规垿鎮╁ù瀣級闂侀潧鐗嗛幊搴ㄥ几濞嗘挻鈷戦悹鍥b偓铏亖闂佸憡鏌ㄦ鎼佸煝閹捐绠i柨鏃傜摂濮婂潡姊洪柅鐐茶嫰婢ь噣寮崼銉︾厱閻忕偛甯哄璺虹;闁瑰墽绮弲鎼佹煥閻曞倹瀚�
相关话题/光电 实验 半导体 光子 电子

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 一种具有“1111”型结构的新型稀磁半导体(La<sub>1–<i>x</i></sub>Sr<sub><i>x</i&g
    摘要:利用高温固相反应法,成功合成了一种新型块状稀磁半导体(La1–xSrx)(Zn1–xMnx)SbO(x=0.025,0.05,0.075,0.1).通过(La3+,Sr2+)、(Zn2+,Mn2+)替换,在半导体材料LaZnSbO中分别引入了载流子与局域磁矩.在各掺杂浓度的样品中均可观察到铁磁 ...
    本站小编 Free考研考试 2021-12-29
  • Mg<sub>2</sub>Si/Si雪崩光电二极管的设计与模拟
    摘要:Mg2Si作为一种天然丰富的环保材料,在近红外波段吸收系数高,应用于光电二极管中对替代市面上普遍使用的含有毒元素的红外探测器具有重要意义.采用Silvaco软件中Atlas模块构建出以Mg2Si为吸收层的吸收层、电荷层和倍增层分离结构Mg2Si/Si雪崩光电二极管,研究了电荷层和倍增层的厚度以 ...
    本站小编 Free考研考试 2021-12-29
  • 容性耦合等离子体中电子加热过程及放电参数控制
    摘要:容性耦合等离子体放电因在工业界有重要的应用价值而受到广泛关注.对于容性耦合等离子体放电的研究主要集中于对等离子体参数的控制,以实现更好的工艺效果,例如高深宽比刻蚀等.而关于等离子体参数的调控主要分为气体、腔室以及源这三个方面.改变这些外部参数,可以直接影响鞘层的动力学过程以及带电粒子的加热过程 ...
    本站小编 Free考研考试 2021-12-29
  • 光电管耦合FitzHugh-Nagumo神经元的同步
    摘要:感光细胞能接收各种强度的可见光,并转换为生物电信号连接视神经;这样的功能可以用光电效应来模拟.本文利用数值计算,分析了基于光电管耦合FitzHugh-Nagumo(FHN)神经元的动力学特性,详细讨论了光电管的参数空间中,混沌和簇放电模式下耦合系统的同步区间.结果表明:在耦合强度较小时,耦合系 ...
    本站小编 Free考研考试 2021-12-29
  • 大功率热平衡感应耦合等离子体数值模拟及实验研究
    摘要:感应耦合等离子体发生器是“临近空间高速目标等离子体电磁科学实验研究装置”的核心部件之一,常用于模拟高焓高速等离子体鞘套环境,为了研究大功率射频中压下感应耦合等离子体发生器的放电特性,采用数值模拟和实验相结合的方法研究其内部的传热与流动特性.本文基于局域热力学平衡条件,通过湍流场-电磁场-温度场 ...
    本站小编 Free考研考试 2021-12-29
  • 原子替位掺杂对单层Janus WSeTe电子结构的影响
    摘要:基于第一性原理计算系统地研究了氮族、卤族和3d过渡金属元素(Ti,V,Cr,Mn,Fe,Co)替位掺杂对单层Janus过渡金属硫族化合物WSeTe电子结构的影响.通过对能带结构、电荷转移以及磁性的分析,发现氮(卤)族原子替位掺杂单层WSeTe会发生本征半导体-p(n)型半导体的转变,Ti,V原 ...
    本站小编 Free考研考试 2021-12-29
  • 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性
    摘要:能源及污染是新时代所面临的重要难题,光催化技术可通过电解水产氢以及降解有机物污染物,在一定程度上解决此问题.而制备光催化活性较好、光生载流子分离效率高的光催化剂是这项技术的关键.本文采用液相剥离法结合电泳沉积法制备得到具有不同堆垛结构的二硫化铼-石墨烯(ReS2-Gra,ReS2在上)与石墨烯 ...
    本站小编 Free考研考试 2021-12-29
  • 基于高速相位型空间光调制器的双光子多焦点结构光显微技术
    摘要:多焦点结构光照明显微镜(multifocalstructuredilluminationmicroscopy,MSIM)能在50μm的成像深度内实现2倍于衍射极限分辨率的提升,但在对厚样品成像时,散射光和离焦光限制了其层析能力和图像衬度.双光子多焦点结构光照明显微镜(two-photonMSI ...
    本站小编 Free考研考试 2021-12-29
  • 闪电M分量光谱特征及通道温度和电子密度特性
    摘要:利用无狭缝光栅摄谱仪记录的一次闪电首次回击后3个M分量的光谱资料,分析了其光谱特征.并结合等离子体理论,首次计算了闪电M分量内部核心通道和周围电晕层通道的温度和电子密度.研究了这两个物理量沿通道的变化特性,并与相应回击放电进行了对比.结果表明:闪电M分量的光谱特征相比回击的光谱特征有明显差异, ...
    本站小编 Free考研考试 2021-12-29
  • 激光加速高能质子实验研究进展及新加速方案
    摘要:利用超强激光与等离子体相互作用来加速高能离子是激光等离子体物理及加速器物理领域的研究热点.经过了近20年的发展,激光离子加速已取得丰硕成果,催生了一批新的应用.本文概述了国内外激光离子加速所取得的标志性实验研究进展,围绕高能质子的产生这一关键问题进行了深入的探讨,介绍了近几年来发展的有潜力的新 ...
    本站小编 Free考研考试 2021-12-29