Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61705091)
Received Date:18 October 2020
Accepted Date:22 December 2020
Available Online:07 May 2021
Published Online:20 May 2021
Abstract:Experimental and theoretical research on photoelectron yield spectrum play a crucial role in electronic and photo-electronic materials and devices, and the reliable and precise estimation of photoelectron yield via photon energy is very important for detecting microscopic electrical information in photo-electronic materials and devices. Photoelectron yield is defined as the number of electrons emitted by per incident photon. Before this work, the technique was based on the interception of a plot of square root of photoelectron yield versus photon energy for metal-insulator hetero-junction, and that of a plot of cube root of photoelectron yield variation with photon energy for insulator-semiconductor hetero-junction. But, how to intercept the relationship between photoelectron yield and photon energy for semiconductor-semiconductor and metal-semiconductor hetero-junctions has not been known. Besides, many experimental plots of square root and cube root of photoelectron yield against photon energy are available, but none of them is a straight line. In order to obtain a more accurate and reliable barrier height, electrical structure of the junction, the energy level distribution of the energy band offset, defect density in the junction, and the valence band profile through the photoelectric yield spectrum, a reliable and accurate model of photoelectron yield spectrum is established via combining the solution to a differential equation and experimental results. A method is proposed to naturally determine the junction barrier height by using the experimental results of the internal current yield varying with the photon energy. The this method can be used to calculate the junction barrier height as accurately and reliably as possible, and the density and energy level distributions of the effective occupancy states of the electrons in the four junctions are obtained by using this photoelectric yield spectrum model, In addition, based on this model, this paper proves mathematically that the density and energy level distribution of the effective occupancy state of electrons present a peak shape. Therefore, the application prospects of this photoelectric yield spectrum model are demonstrated. Keywords:photoelectron yield spectroscopy/ photonic energy/ model/ junction barrier height
表1列出了由最佳模拟参数获得的肖特基势垒高度, 显然, 这种理论计算的肖特基势垒高度比光电产额的立、平方根随入射光子能量散点几何外推获得的肖特基势垒高度要可靠和准确. 考察完模型(6)在描述由绝缘体同半导体及金属组成异质结的光电产额随光子能量变化的有效性后. 自然应当考察模型(6)对由半导体同半导体及半导体和金属组成异质结的光电产额随光子能量变化的有效性. 图2分别给出了光在2.1 eVAl0.2Ga0.3In0.5P和1.7 eV Al0.2Ga0.8As[18]组合的光照面积为0.1 cm2和面积为6.4 × 10–7 cm2的Pt/GaP产生的光电产额的实验结果[22], 同样对Al0.2Ga0.3In0.5P/Al0.2Ga0.8As和Pt/GaP的能量及光电产额实验结果进行模型(6)的曲线最小二乘法最佳拟合, 得到了表1中的优化参数. 同样, 图2也给出了Al0.2Ga0.3In0.5P/Al0.2Ga0.8As和Pt/GaP光电产额的平、立方根随入射光能量变化的散点图, 再一次可以看出, 理论结果同实验点重合的数据对明显多于光电产额的平方、立根同入射光能量在一条直线上的数据对. 应用表1中的最佳参数不难得到可靠而又准确的肖特基势垒高度. 这里Al0.2Ga0.3In0.5P/Al0.2Ga0.8As的肖特基势垒高度既低于Al0.2Ga0.3In0.5P的禁带宽度也低于Al0.2Ga0.8As的禁带宽度, 这个结果正是Al0.2Ga0.3In0.5P/Al0.2Ga0.8As成为效率到达47.1%的太阳能电池的一部分原因[18]. 图 2 实验和模型(6)模拟的Al0.2Ga0.3In0.5P/Al0.2Ga0.8As(半导体-半导体 (a), (c))和Pt/GaP(金属-半导体, (b), (d))异质结内光电产额(Y)作为入射光能量函数的结果及Y1/3和Y1/2随入射光能量变化图 Figure2.$\sqrt[n]{Y} \text- h\nu$ and $Y \text- h\nu$ plots of the experimental data and the theoretical fits in the form of Eq. (6) for both Al0.2Ga0.3In.5P/Al0.2Ga0.8As ((a), (c)) and Pt/GaP ((b), (d)) Schottky contacts.
最近报道了石墨烯/二氧化硅(Graphene/SiO2)的光电产额谱实验数据[19], 图3给出了石墨烯/二氧化硅光电产额谱实验曲线. 通过模型(6)对石墨烯/二氧化硅光电产额谱实验数据的曲线最小二乘法最佳拟合获得了表1中的数学表达式及结势垒高度, 图3也给出了能够最好地描述结Graphene/SiO2光电产额随入射光子能量变化规律的最佳参数的理论曲线. 由于报道的是石墨烯的逸出功[23], 图3描绘了石墨烯/二氧化硅光电产额立方根随入射光子能量变化的散点图, 可以看出理论结果同实验点重合的数据对明显多于光电产额的立方根同入射光子能量在一条直线上的数据对. 图 3 实验和模型(6)模拟的石墨烯/二氧化硅(Graphene/SiO2 (c), (d)), p型单晶硅(b)和有机半导体P3HT(a)光电产额(Y)作为入射光能量函数的结果及Y1/3随入射光能量变化图 Figure3. Experimental and theoretical IPE yield as a function of photon energy for Graphene/SiO2 ((c), (d)), P3HT (a) and p-type Si (b).
这里A为光照射面积. 根据文献照射光的能量减去结势垒高度给出了高于价带顶的能量[12], 图4给出了Pt/GaP, MoS2/SiO2, Al0.2Ga0.3In0.5P/ Al0.2Ga0.8As 和P3HT的电子有效占有态的密度能级分布(也可以表示成电子有效占有态的密度按照射光的能量分布[28]). 图 4 Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2 (c)和P3HT(d)电子有效占有态的密度按照能级(能量)分布 Figure4. Curves display the spectra of the effective density of the filled electronic states of the Pt/GaP (a), Al0.2Ga0.3In0.5P/Al0.2Ga0.8As (b), MoS2/SiO2 (c) and P3HT (d), as the first derivative of the recorded.