Institute of Advanced Optoelectronic Materials and Technology, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
Fund Project:Project supported by the Foundation for Sci-tech Activities for the Overseas Chinese Returnees in Guizhou Province, China (Grant No. [2018]09), the High-level Creative Talent Training Program in Guizhou Province of China (Grant No. [2015]4015), and the Graduate Research Fund in Guizhou Province of China (Grant No. [2020]035)
Received Date:16 November 2020
Accepted Date:17 December 2020
Available Online:11 May 2021
Published Online:20 May 2021
Abstract:InGaAs and HgCdTe materials are widely used in short wave infrared photodetectors, which contain heavy metal elements. The massive use of the heavy metal elements naturally results in their scarcity, and the nonnegligible environmental pollution. Searching for other suitable materials for infrared devices becomes a key to solving the above problems. As a kind of abundant and eco-friendly material, Mg2Si has a high absorption coefficient in the near-infrared band. Its application in infrared detector makes it possible to replace the infrared devices containing toxic elements on the market in the future. The Mg2Si/Si avalanche photodiode(APD) with separation structure of absorption layer, charge layer and multiplication layer, with Mg2Si serving as the absorption layer, is constructed by using the Atlas module in Silvaco software. The effects of the thickness and doping concentration of the charge layer and multiplier layer on the distribution of internal electric field, punch-through voltage, breakdown voltage (Vb), C-V characteristics, and transient response of Mg2Si/Si SACM-APD are simulated. The effects of bias voltage on the I-V characteristics and spectral response are analyzed. The punch-through voltage, breakdown voltage, dark current density, gain coefficient (Mn) and the current amplification factor (M) after avalanche effect of APD are obtained after the structure optimization. According to the simulation results, the spectral response wavelength of the device is extended to 1.6 μm, so the selection of Mg2Si as the absorption layer effectively extends the spectral response band of Si based APD. When the wavelength of incident light is 1.31 μm and the optical power is 10 mW/cm2, the obtained punch-through voltage is 17.5 V, and the breakdown voltage is 50 V. When the bias voltage is 47.5 V (0.95Vb), the peak value of spectral response is 25 A/W at a wavelength of 1.1 μm, a density of dark current is about 3.6 × 10–5 A/cm2, a multiplication factor Mn is 19.6, and Mn achieves a maximum value of 102 when the device is broken down. Meanwhile, the current amplification factor M after avalanche effect is 75.4, and the current gain effect of the SACM structure is obvious. The peak value of spectral response for the pin-type photodiode in the previous study is only 0.742 A/W. Comparing with the pin-type photodiode, the spectral response of Mg2Si/Si SACM-APD is greatly improved. In this work, the structure parameters of the device are optimized, which lays a nice foundation for fabricating the high-performance devices. Keywords:SACM-APD/ Mg2Si/Si heterojunction/ spectral response/ gain coefficient
表2模拟计算中采用的各层基本参数 Table2.The parameters of different layers in the simulation.
对于光电器件的模拟, 为了使仿真结果更接近实际, 材料表面折射率情况被考虑到, 吸收系数是光电器件模拟中重要的参数, 对光生载流子的产生率以及光生电流起着主导的作用, 文中Mg2Si[9]与c-Si[23]中的吸收系数与折射率均来自于近期文献中实验测量到的, 如图3所示. 图 3 Mg2Si与c-Si的光学特性 (a) Mg2Si与c-Si的吸收系数(cm–1)与入射能量的关系; (b) Mg2Si与c-Si的折射率与波长的关系 Figure3. Optical properties of Mg2Si and c-Si: (a) Absorption coefficient(cm–1) of the poly-Mg2Si and c-Si; (b) refractive Index of the poly-Mg2Si and c-Si.
-->
3.1.内部电场与载流子分布
图4(a)给出了Mg2Si/Si SACM-APD在电荷层厚度为0.1 μm时随外加电压升高的内部电场分布图. 由图4(a)可知, 当电荷层太薄时, 对器件的倍增层与吸收层的场强分布调控能力不足, 倍增层电场将会延伸至吸收层中, 即无法使倍增层与吸收层完全分离开来, 会使雪崩倍增效应在吸收层中加剧, 器件的隧穿电流增大, 影响器件性能. 如图4(b)所示, 当电荷层厚度增加为0.2 μm时, 吸收层与倍增层分离开来, 使雪崩效应主要在倍增层中产生, 光生载流子的产生则几乎在吸收层中, 这种情况下将能显著地降低器件的暗电流, 因此电荷层厚度设置不应太薄. 图 4 (a) 电荷层厚度为0.1 μm时器件的电场分布; (b) 电荷层厚度为0.2 μm时器件的电场分布 Figure4. (a) Electric field distribution of the device with charge layer thickness of 0.1 μm; (b) electric field distribution of the device with charge layer thickness of 0.2 μm.
图5揭示了不同外加偏压下的器件内部的载流子生成率, 由图5可知, 在偏压小于20 V时, 器件内部载流子生成率几乎只发生在倍增层中, 对应的此时暗电流增加较为平稳. 但当偏压为40 V时, 倍增层中的载流子生成率上升了两个数量级, 部分耗尽区中也存在载流子生成, 此时器件处于穿通状态. 当偏压增大至60 V时, 倍增层中载流子生成率达到1026 cm3·s数量级, 电流快速增加, 器件已处于雪崩击穿状态. 图 5 Mg2Si/Si SACM-APD器件在不同偏压下内部的载流子生成率 Figure5. The influence of the different Bias voltage on the carrier generation rate.
图6为在外加偏压为40 V时, 倍增层不同掺杂浓度下倍增层的电场分布关系, 在掺杂浓度为1 × 1014 cm–3, 其内部电场分布均匀, 当掺杂浓度继续增加至1 × 1015 cm–3时, 整体的电场强度增加有限, 其分布呈现出较小程度的倾斜, 继续增高掺杂浓度, 倍增层整体电场强度上升很快, 且不均匀程度加剧, 此时会导致器件产生较大的暗电流, 降低器件的增益系数. 所以在器件制备中, 为保证倍增区的电场相对稳定, 倍增层的掺杂浓度一般不宜超过1 × 1015 cm–3. 另一方面接触层采用重掺杂方式, 可提高内部整体电场, 使得吸收层电场起伏变小. 图 6 倍增层不同掺杂浓度时倍增层的电场分布 Figure6. Electric field distribution of the multiplier layer under different doping concentrations.
当电荷层掺杂浓度为8 × 1016 cm–3、厚度为0.2 μm时, 图8揭示了倍增层厚度$ {w}_{\mathrm{m}} $的增加对APD穿通电压与击穿电压的影响. 如图8所示, 击穿电压随$ {w}_{\mathrm{m}} $的增大出现先减小后增大的现象, ${w_m}$从0.2到0.6 μm时总体呈下降趋势, 在0.6到1.2 μm时呈上升趋势, 在0.6 μm时Vb取得最小值53 V, 且总体呈现非线性变化规律, 而穿通电压呈线性增加, 上述变化趋势可由APD的增益系数公式[24]来解释. 若倍增区厚度太薄, 会产生较大的击穿电压与很小的穿通电压. 因此在实际制作中可适当提高倍增层厚度, 提升载流子在倍增层中碰撞电离的几率, 提高器件的增益系数. 图 8 不同倍增层厚度时的击穿电压与穿通电压 Figure8. Breakdown voltage and penetration voltage at different thicknesses of the multiplier layer.
图9揭示了雪崩光电二极管中的倍增层不同掺杂浓度对器件的击穿电压与穿通电压的影响. 当倍增层掺杂浓度升高, 击穿电压逐渐下降, 且下降趋势微弱, 掺杂浓度从1 × 1014 cm–3上升至1 × 1015 cm–3时, 击穿电压仅从56 V下降至53 V, 穿通电压则几乎没变. 图 9 倍增层不同掺杂浓度与穿通电压和击穿电压关系 Figure9. Breakdown voltage and penetration voltage at different doping concentration of the multiplier layer.
图12为APD在频率为1 MHz下的C-V仿真曲线随倍增层厚度的变化. 当外加偏压一定时, 随着倍增层厚度的增加, 器件电容减小. 当厚度一定时, 随着外加偏压的减小, 器件电容增大. 从理论上分析时, APD中由于电极与衬底介电性产生的电容和管壳电容是由器件工艺来决定的, 在这里不做讨论, 只考虑结电容${C_j}$, 可等效为pn结处理, 如果外部交流小信号频率很高时, 电容${C_j}$以耗尽电容${C_\tau }$为主, 可忽略${C_d}$[28], 当外加交流偏置电压V时得到${C_j}$关系式为[28,29] 图 12 倍增层厚度对器件电容的影响 Figure12. The influence of the thickness of multiplication layer on the capacitance of the device.