1.Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China 2.Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Fund Project:Project supported by the National Basic Research Program of China (Grant No. 2016YFA0300402), the National Natural Science Foundation of China (Grant No. 12074333), and the Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01002)
Received Date:22 November 2020
Accepted Date:23 December 2020
Available Online:11 May 2021
Published Online:20 May 2021
Abstract:Diluted magnetic semiconductor (DMS) that combines the properties of spin and charge degrees of freedom, which has potential applications in the field of spintronic devices. In the 1990s, due to the breakthrough of low-temperature molecular beam epitaxy technology, scientists successfully synthesized III-V DMS (Ga, Mn)As, and developed some spintronics devices accordingly. However, the maximum Curie temperature of (Ga, Mn)As is only 200 K, which is still below room temperature that is required for practical applications. Searching for diluted magnetic semiconductors with higher Curie temperature and the exploring of their magnetism is still one of the focuses at present. In recent years, developed from iron-based superconductors, a series of novel magnetic semiconductors have been reported. These new DMSs have the advantages of decoupled charge and spin doping, and each concentration can be precisely controlled. In this paper, novel bulk diluted magnetic semiconductors (La1–xSrx)(Zn1–xMnx)SbO (x = 0.025, 0.050,0.075, 0.10) are successfully synthesized, with the highest Tc ~ 27.1 K for the doping level of x = 0.10. We dope Sr2+ and Mn2+ into the parent semiconductor material LaZnSbO to introduce holes and moments, respectively. The ferromagnetic ordered phase transition can be observed in the samples with various doping concentrations. A relatively large coercive field is observed to be ~ 5000 Oe from the iso-thermal magnetization measurement at 2 K. The (La1–xSrx)(Zn1–xMnx)SbO has the same crystal structure as the “1111-type” iron-based superconductor LaFeAsO, and the lattice parameter difference is very small. It provides a possible material choice for preparing the multifunctional heterojunction devices. Keywords:diluted magnetic semiconductor/ Curie temperature/ magnetic ordering/ coercivity
表1“1111”型稀磁半导体、超导体、反铁磁体的相变温度 Table1.The phase transition temperature of 1111-type dilute magnetic semiconductors, superconductors and antiferromagnets.
3.结果和讨论图1(a)为(La1–xSrx)(Zn1–xMnx)SbO的X射线衍射分析结果, 该系列样品很好地符合了ZrCuSiAs型四方晶相的结构(group P4/nmm), 如图1(b)所示. 随着掺杂量的增加, 当x ≥ 0.075, 样品中观察到少量的ZnSb杂相, 该杂相在高掺杂比的(La1–xCax)(Zn1–xMnx)SbO[10]中亦能观察到. 但由于ZnSb是一种顺磁性材料, 故其对接下来讨论的铁磁性并不会产生影响. 我们利用开源软件GSAS-II对(La0.95Sr0.05)(Zn0.95Mn0.05)SbO样品进行Rietveld结构精修[32], 如图1(c)所示. 所得的加权可靠因子Rwp为13.1%, 表明制备所得样品的质量较好. 通过Rietveld结构精修, 获得了晶格参数a和c, 如图1(d)所示. 当掺杂量x = 0.025时, 样品的晶格参数a = 4.22955 ?, c = 9.56166 ?. 随着Sr和Mn掺杂量的增加, 晶格参数a和c均单调增加, 当x = 0.10, 晶格参数a增大至4.2331 ?, 晶格参数c增大至9.59537 ?, 表明Sr、Mn原子分别成功地掺杂至母相LaZnSbO的La位和Zn位. 图 1 (a) (La1–xSrx)(Zn1–xMnx)SbO的X射线衍射图, 杂质ZnSb由(*)标注; (b) LaZnSbO的晶体结构; (c) (La0.95Sr0.05)(Zn0.95Mn0.05)SbO的Rietveld精修结果; (d) (La1–xSrx)(Zn1–xMnx)SbO的晶格常数 Figure1. (a) The X-ray diffraction patterns for (La1–xSrx)(Zn1–xMnx)SbO (x = 0.025, 0.05, 0.075, 0.1); Trace of impurities ZnSb (*) are marked; (b) the crystal structure of LaZnSbO; (c) the Rietveld refinement of (La0.95Sr0.05)(Zn0.95Mn0.05)SbO; (d) the lattice parameters of (La1–xSrx)(Zn1–xMnx)SbO.
在图2(a)中, 我们展示了(La1–xSrx)(Zn1–xMnx)SbO系列样品在100 Oe外加磁场下测得的场冷(FC)和零场冷(ZFC)直流磁化曲线. 我们可以明显地观察到样品的磁化强度在30 K和40 K之间急剧增加, 表明样品在低温下发生了顺磁相到铁磁相的转变; 且随着掺杂浓度的增加, 样品在温度为2 K下饱和磁矩值逐渐增大. 在只掺杂Mn的样品La(Zn0.95Mn0.05)SbO[12]中, Mn替代Zn只引入了局域磁矩, 并未引入载流子, 因而在整个温区内均表现为顺磁行为, 没有观察到铁磁有序信号. 而当在Zn位掺入Mn引入局域磁矩的同时, 在La位掺入Sr引入载流子, 我们在样品中就观察到了铁磁有序转变. 由此可以看出, 铁磁性的产生跟载流子和磁矩的相互作用有直接关系. 图 2 (a) (La1–xSrx)(Zn1–xMnx)SbO分别在100 Oe的场冷和零场冷测量条件下的直流磁化强度; (b) (La1–xSrx)(Zn1–xMnx)SbO拟合后的$ 1/({\rm{\chi }}-{\chi }_{0}) $结果, 箭头标注为外斯温度θ; (c) (La1–xSrx)(Zn1–xMnx)SbO磁化强度与温度之间的一阶导数关系(dM/dT), 箭头标注为样品的居里温度TC; (d)温度为2 K下的等温磁化强度曲线 Figure2. (a) The temperature dependence of DC magnetization for (La1–xSrx)(Zn1–xMnx)SbO measured under field-cooling (FC) and zero-field-cooling(ZFC) with external field of 100 Oe; (b) the plot of $ 1/({\rm{\chi }}-{\chi }_{0}) $ versus T for (La1–xSrx)(Zn1–xMnx)SbO, and the arrow marked the Weiss Temperature $ \theta $; (c)the derivative of moment versus temperature for (La1–xSrx)(Zn1–xMnx)SbO, and the arrow marked the Curie Temperature; (d)iso-thermal magnetization for (La1–xSrx)(Zn1–xMnx)SbO at 2 K.