1.Department of Physics, National University of Defense Technology, Changsha 410073, China 2.State Key Laboratory of Nuclear Physics and Technology (SKLNPT), School of Physics, Peking University, Beijing 100871, China 3.Ministry of Education Key Laboratory of High Energy Density Physics Simulation (HEDPS), Center for Applied Physics and Technology (CAPT), Peking University, Beijing 100871, China 4.Key Laboratory for Laser Plasmas of Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 5.Collaborative Innovation Center for IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 6.State Key Laboratory of Plasma Physics, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621000, China
Fund Project:Project supported by the Science Challenge Project (Grant No. TZ2018005), the National Natural Science Foundation of China (Grant Nos. 11825502, 11921006, 12004433), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1630246), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25050900), the National Key R&D Program of China (Grant No. 2016YFA0401100), the Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ5649), and the Research Project of National University of Defense Technology, China (Grant No. ZK19-12).
Received Date:21 February 2021
Accepted Date:28 March 2021
Available Online:14 April 2021
Published Online:20 April 2021
Abstract:The realizing of the detection and control of ultrafast process conduces to understanding and remoulding the physical world at a microcosm level. The attosecond light source with attosecond temporal resolution and nanometer spatial resolution can realize real-time detection and manipulation of the atomic-scale electronic dynamics and relevant effects of the substances. Therefore, attosecond science is considered as one of the most important milestones in the history of laser science. and has been listed as an important scientific and technological development direction in the coming 10 years. High-order harmonic generation (HHG) from intense laser-matter interaction is one of the most important routes to breaking through the femtosecond limit and achieving brilliant attosecond pulse radiations, and thus having aroused great interest in recent years. After more than 20-year development, the research about attosecond pulse generation by laser-gas interaction has reached a mature stage. This method produces the shortest isolated pulse in the world to date, with a pulse width being only 43 as. However, this method based on ionization-acceleration-combination encounters inevitable difficulties in pursuing the relativistically intense attosecond pulses and the highest possible photon energy. Quite a lot of studies have proved that the HHG efficiency from laser-plasma interaction can be a few orders of magnitude higher than that in gaseous media, which makes it possible to produce pulses with shorter pulse width and higher photon energy. In this article, we introduce the main generation mechanisms, research progress and frontier applications of HHG through the laser-plasma interaction process. In Section 2, we introduce the HHG generation mechanisms, including coherent wake emission, which is used to describe the HHG process driven by a nonrelativistic laser; relativistic oscillating mirror, which can well explain most of HHG processes generated from plasma-vacuum interface in relativistic regime; coherent synchrotron emission, which is suited to explain the HHG synchronously emitted from isolated electron sheets. The research progress is summarized in Section 3 from the aspects of radiation efficiency, polarization characteristics, phase characteristics, generation and diagnosis of isolated attosecond pulses, etc. Frontier applications of these ultra-broadband intense attosecond pulses are presented in the last section, such as the study of electronic dynamics, process, coherent diffraction imaging, diagnosis of extreme states of matter, the generation of extremely intense fields, etc. Finally, an outlook on the future development trends and innovation breakthroughs is also presented. Keywords:intense lasers/ plasma/ high-order harmonics/ attosecond pulses
全文HTML
--> --> -->
1.引 言自然物质世界的时间尺度跨越从$ 10^{-24} $ s的核子运动特征周期到$ 10^{18} $ s的宇宙年龄, 如图1所示. 在这些不同时空尺度上, 物质世界是互相关联互相耦合的, 微观尺度上超快动力学过程的累积与演化决定了物质的宏观特性. 因此对微观世界的认识有助于我们更深地了解物质世界的本质. 调Q、锁模等激光技术的发展使得对超快动力学过程的研究进入飞秒($1\;{\rm{ fs}} = 10^{-15} \; {\rm{s}}$)量级, 人类得以在原子、分子的层面上进行科学研究和技术创新, 有力推进了物理、化学、生物、医学等领域的迅速发展, 并催生了新的科学前沿. 飞秒化学即是一个典型实例, 科学家Zewail [1]利用飞秒激光成功捕获到分子化学键的断裂和形成过程, 从根本上改变了人们对化学反应过程的认识, 为可控的化学反应创造了可能性, 引发了整个化学及相关学科的重大变革, Zewail本人也因此荣获1999年诺贝尔化学奖. 飞秒激光在前沿科学和技术应用领域取得的成果不断推动着超快光学向更短的阿秒($1\;{\rm{as}}= 10^{-18} \; {\rm{s}} $)时间领域进军, 以实现对连接物理、化学、生物等学科的微观粒子—电子的动力学过程研究. 图 1 自然物质世界的典型时间跨越尺度: 从核子运动特征周期10–24 s到宇宙年龄1018 s Figure1. Typical time spans in the natural physical world: From 10–24 s for the characteristic period of nuclear motion to 1018 s for the age of the universe.
相干尾场辐射(CWE)机制由Quéré等[12]提出, 用于解释强度介于$ 10^{15}—10^{18} \; \rm{W/cm^2} $的P极化激光与密度不均匀等离子体斜相互作用产生高次谐波的原因. 其具体内涵如下: 当一束P极化激光斜照射在等离子体靶上时, 作用区内的电子经真空加热(Brunel 机制)获得能量. 由于激光无法在临界密度以上区域传播, Brunel电子重新返回等离子体内部后即与激光场分离, 以近乎不变的速度继续向内传输. 在此过程中, 加速时间长、速度快的电子可追赶上前面加速时间短、速度慢的电子, 形成致密的电子束. 随着电子束扫过不同密度区, 其尾部激发起等离子体静电振荡, 该振荡通过线性模式转换为电磁辐射, 且辐射频率等于当地等离子体振荡频率. 图3给出了一维粒子模拟中CWE机制下典型的谐波辐射过程和辐射特性, 模拟中采用强度为$ 3.4\times10^{17} \; {\rm{W/cm^2}} $的$ 800\;{\rm{nm}} $激光以45°角入射靶前有预等离子体分布的等离子体靶. 其中预等离子体尺度为$ 0.05\lambda $($ \lambda $为入射激光波长), 靶的最大电子密度为$ 200 n_{\rm c} $($ n_{\rm c} $为激光波长对应的等离子体临界密度). 图 3 一维粒子模拟中获得的典型CWE机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 绿线为Brunel电子轨迹, 紫色部分为对应时刻产生的频率介于3—15倍频之间的高次谐波; (b) 反射光的频谱分布. 这里采用强度为$3.4\times10^{17}\;{\rm{W/cm^2}}$的800 nm激光以45°角斜入射预等离子体尺度为$0.05\lambda$, 最大电子密度为$200 n_{\rm c}$的等离子体靶 Figure3. Typical harmonic radiation process and radiation characteristics of CWE mechanism in one-dimensional (1D) particle-in-cell (PIC) simulation. (a) Temporal evolution of electron density. The green lines and the purple part are the trajectories of Brunel electrons and the high-order harmonic of the corresponding time with frequency between 3ω – 15ω respectively. (b) The spectrum of the reflected laser. Here, a laser with intensity of $3.4\times10^{17}\;{\rm{W/cm^2}}$ and wavelength $\lambda=800\;{\rm{nm}}$ is incident on a plasma target with preplasma scale length of $0.05\lambda$ and the maximum electron density of $200 n_{\rm c}$ at an angle of 45°.
为便于理论分析, 对于斜入射问题, 本文均通过坐标系变换, 将其转换为研究激光正入射具有初始动量等离子体靶的情形[13]. 令$ x $轴方向为纵向, 电子束在$ x $处激发的尾场可表示为$\delta(x, t) = $$ \delta_0{\rm{cos}}[\psi(x, t)]$, 其中$ \psi(x, t) = \omega_{\rm p}(x)\times(t-x){\rm{cos}}\theta $, $ \omega_{\rm p} $为当地等离子体的静电振荡频率, $ \theta $为激光入射角. 该尾场的波矢$ k = -\partial\psi/\partial x $即为
$ k = -\frac{\partial\omega_{\rm p}}{\partial x}(t-x){\rm{cos}}\theta+\omega_{\rm p}{\rm{cos}}\theta. $
表1谐波偏振的选择定则 Table1.Selection rules for polarization of harmonics
图 4 一维粒子模拟中获得的典型ROM机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 蓝色部分为对应时刻产生的频率介于15—150倍频之间的高次谐波; (b)反射光的频谱分布, 红色虚线为理论预测的标度率$I_n\propto n^{-8/3}$. 这里强度为$7.7\times10^{21}\;{\rm{W/cm^2}}$的800 nm激光正入射初始电子密度为$250 n_{\rm c}$的等离子体靶, 靶表面无预等离子体 Figure4. Typical harmonic radiation process and radiation characteristics of ROM mechanism from 1D PIC simulation: (a) Temporal evolution of electron density, and the bule part is the high-order harmonic of the corresponding time with frequency between $15\omega–150\omega$; (b) spectrum of the reflected laser, and the dashed red line is the prediction of theory $I(\omega)\propto\omega^{-8/3}$. Here, the incident laser iradiates the target normally, the intensity and wavelength of which are $7.7\times10^{21}\;{\rm{W/cm^2}}$ and 800 nm respectively. The electron density of the target is $250 n_{\rm c}$ and there is no preplasma.
在CSE机制中, 致密纳米电子层的产生使得电流形状因子可视作$ \delta(x-x_{\rm e}) $, 因此其谐波谱满足$ I_n\propto n^{-4/3} $或$ n^{-6/5} $. 由于CSE谐波是电子层中所有电子同步辐射叠加后的宏观结果, 其谱宽不仅与电子层的速度有关, 还与电子层的相干性, 即电子层的束宽相关. 对于某个波长的辐射, 当电子层的宽度大于其波长的一半时, 该辐射以及比之波长更短的辐射由于非相干叠加强度迅速下降. 根据(6)式和(7)式可知, CSE是一种比ROM更为高效的谐波辐射机制, 在100阶次附近, CSE机制的谐波辐射效率比ROM机制出高2个数量级. 此外, 由于谐波来自电子层的同步辐射, 因此可同时在反射和透射方向产生高次谐波[23,24]. 这也是它区别于ROM机制的又一特点. 但是CSE机制对激光和靶的参数极其敏感, 并不是一个皮实的辐射过程. 图5给出了一维粒子模拟中获得的CSE机制下典型的谐波辐射过程和辐射特性, 模拟中采用强度为$ 7.7\times10^{21} \; {\rm{W/cm^2}} $的800 nm激光以$ 63^{\circ} $角斜入射预等离子体尺度为$ 0.033\lambda $, 最大电子密度为$95 n_{\rm c} $的等离子体靶. 图 5 典型CSE机制的谐波辐射过程和辐射特性 (a)电子密度分布随时间的变化, 蓝色部分为对应时刻产生的频率介于15—150倍频之间的高次谐波; (b)反射光的频谱分布, 红色虚线为理论预测的标度率$I_n\propto n^{-4/3}$. 这里强度为$7.7\;\times $$ 10^{21}\;{\rm{W/cm^2}}$的800 nm激光以$63^{\circ}$角斜入射预等离子体尺度为$0.033\lambda$, 最大电子密度为$95 n_{\rm c}$的等离子体靶 Figure5. Typical harmonic radiation process and radiation characteristics of CSE mechanism. (a) Temporal evolution of electron density, and the bule part is the high-order harmonic of the corresponding time with frequency between $15\omega– 150\omega$; (b) spectrum of the reflected laser, and the dashed red line is the prediction of theory $I(\omega)\propto\omega^{-4/3}$. Here, a laser with intensity of $7.7\times10^{21}\;{\rm{W/cm^2}}$ is incident on a plasma target with preplasma scale length of $0.033\lambda$ and the maximum electron density of $95 n_{\rm c}$ at an angle of $63^{\circ}$. Here $\lambda=800 \;{\rm{nm}}$ is the wavelength of lasers.