全文HTML
--> --> -->随着计算材料科学的发展, 材料的理论研究有助于材料成分设计及其性能的提高[17-19]. 固体与分子经验电子理论在材料的电子结构和性能研究方面, 具有丰富的研究成果, 涉及材料的力学性能、热性能、电磁性能和光特性等方面. 性能的理论计算与实验相符[20-22]. 其优势在于: 理论模型简单, 没有涉及复杂的微积分及数理方程计算, 而且计算参数少.
本文应用固体与分子经验电子理论研究液态金属电池Na||Sb-Pb-Sn, 并通过价电子结构的分析和热、电性能(电极熔点, 结合能, 电势, 开路电压)计算, 揭示电池性能与电子结构的关联性.
2
2.1.价电子结构的三种假设
32.1.1.双态的假设
电子结构存在两种基本的状态: 能量低的稳态(h态)及能量高的激发态(t态), 双态分布着各种各样的电子, 如: s, p, d轨道上的价电子ns, np, nd; 共价电子nc; 晶格电子nl; 哑对电子nY; 磁电子m3d及总电子nT.3
2.1.2.杂化态叠加的假设
依据量子力学态叠加原理, 物质的电子结构是由h态和t态成分比例分数Ch和Ct的叠加. 其比例分数Ch和Ct是不连续的, 呈现量子化. 其计算公式为
3
2.1.3.键距方程
对于晶胞内任何两个相邻的u和v原子所形成的u—v键, 其键矩可以根据Pauling提供的键距计算公式:




2
2.2.键距差方法[20,21]:
第1条键:














2
2.3.性能计算模型
根据价电子结构参数, 建立结合能理论模型. 能量由四项组成: 键能、晶格电子电位能、磁能及内壳层电子的内聚能. 结合能











熔化模型: 热声子能量随着温度的升高增加. 当达到温度达到临界值(熔点





开路电压V: 对于液态金属电池而言, 开路电压等于阳、阴电极的电势差. 应用阳、阴电极的电位能差除以其总的晶格电子数

3.1.阴极的价电子结构与热电性能计算
为了降低电池阴极的熔点, 在阴极Na金属中添加熔点低的IA族碱金属元素K, Rb, Cs形成Na1–xIAx合金电极(x ≤ 0.05). Na具有体心立方结构, 空间群为











Na1–xIAx | $ {I}_{\alpha } $ | $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/? | ${\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/? | $ {n}_{\rm{A}}$ | $ { I}_{\alpha } $ | $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/${ \text{?} }$ | ${\bar{D} }_{\mathrm{uv} }\left({n}_{\alpha }\right)/{ \text{?} }$ | $ {n}_{\alpha } $ | |?D|/${\text{?} }$ |
Na | 8 | 3.7296 | 3.7502 | 0.05160 | 6 | 4.3004 | 4.3210 | 0.00810 | 0.0206 |
Na0.99K0.01 | 8 | 3.7381 | 3.7538 | 0.05220 | 6 | 4.3103 | 4.3260 | 0.00820 | 0.0157 |
Na0.99Rb0.01 | 8 | 3.7430 | 3.7572 | 0.05220 | 6 | 4.3157 | 4.3300 | 0.00820 | 0.0143 |
Na0.99Cs0.01 | 8 | 3.7454 | 3.7628 | 0.05220 | 6 | 4.3187 | 4.3361 | 0.00810 | 0.0175 |
Na0.98K0.02 | 8 | 3.7465 | 3.7574 | 0.05290 | 6 | 4.3202 | 4.3310 | 0.00823 | 0.0108 |
Na0.98Rb0.02 | 8 | 3.7564 | 3.7643 | 0.05290 | 6 | 4.3310 | 4.3389 | 0.00820 | 0.0079 |
Na0.98Cs0.02 | 8 | 3.7611 | 3.7755 | 0.05290 | 6 | 4.3370 | 4.3513 | 0.00817 | 0.0143 |
Na0.97K0.03 | 8 | 3.7550 | 3.7610 | 0.05348 | 6 | 4.3301 | 4.3361 | 0.00829 | 0.0060 |
Na0.97Rb0.03 | 8 | 3.7697 | 3.7713 | 0.05351 | 6 | 4.3463 | 4.3479 | 0.00825 | 0.0016 |
Na0.97Cs0.03 | 8 | 3.7769 | 3.7881 | 0.05354 | 6 | 4.3552 | 4.3665 | 0.00821 | 0.0113 |
Na0.96K0.04 | 8 | 3.7635 | 3.7647 | 0.05411 | 6 | 4.3399 | 4.3411 | 0.00834 | 0.0012 |
Na0.96Rb0.04 | 8 | 3.7831 | 3.7785 | 0.05415 | 6 | 4.3616 | 4.3570 | 0.00829 | 0.0047 |
Na0.96Cs0.04 | 8 | 3.7926 | 3.8009 | 0.05419 | 6 | 4.3735 | 4.3818 | 0.00824 | 0.0082 |
Na0.95K0.05 | 8 | 3.7719 | 3.7684 | 0.05474 | 6 | 4.3498 | 4.3463 | 0.00840 | 0.0036 |
Na0.95Rb0.05 | 8 | 3.7965 | 3.7856 | 0.05479 | 6 | 4.3769 | 4.3661 | 0.00834 | 0.0109 |
Na0.95Cs0.05 | 8 | 3.8084 | 3.8136 | 0.05484 | 6 | 4.3918 | 4.3971 | 0.00827 | 0.0052 |
表1Na1–xIAx合金键距计算
Table1.Calculation of bond distances of Na1–xIAx alloy.
Na1–xIAx合金的价电子结构计算结果如表2所示. 基体金属Na取第2杂阶, 掺杂金属K, Rb, Cs取第4杂阶. 随着IA族元素的掺杂量的增加, 共价电子数nc, s与p价电子数ns与np趋于增加, 晶格电子数nl减少. 将这些价电子结构参数代入计算性能模型, 计算合金的热、电性能. 计算结果见表3.
Na1–xIAx | nc | ns | np | nl | R(1) |
Na | 0.4614 | 0.4606 | 0.0008 | 0.5386 | 1.4181 |
Na0.99K0.01 | 0.4668 | 0.4660 | 0.0008 | 0.5332 | 1.4217 |
Na0.98K0.02 | 0.4722 | 0.4713 | 0.0008 | 0.5278 | 1.4254 |
Na0.97K0.03 | 0.4776 | 0.4767 | 0.0009 | 0.5224 | 1.4290 |
Na0.96K0.04 | 0.4830 | 0.4821 | 0.0009 | 0.5170 | 1.4327 |
Na0.95K0.05 | 0.4884 | 0.4875 | 0.0009 | 0.5116 | 1.4363 |
Na0.99Rb0.01 | 0.4668 | 0.4660 | 0.0008 | 0.5332 | 1.4235 |
Na0.98Rb0.02 | 0.4722 | 0.4713 | 0.0008 | 0.5278 | 1.4289 |
Na0.97Rb0.03 | 0.4776 | 0.4767 | 0.0009 | 0.5224 | 1.4343 |
Na0.96Rb0.04 | 0.4830 | 0.4821 | 0.0009 | 0.5170 | 1.4397 |
Na0.95Rb0.05 | 0.4884 | 0.4875 | 0.0009 | 0.5116 | 1.4451 |
Na0.99Cs0.01 | 0.4668 | 0.4660 | 0.0008 | 0.5332 | 1.4263 |
Na0.98Cs0.02 | 0.4722 | 0.4713 | 0.0008 | 0.5278 | 1.4345 |
Na0.97Cs0.03 | 0.4776 | 0.4767 | 0.0009 | 0.5224 | 1.4428 |
Na0.96Cs0.04 | 0.4830 | 0.4821 | 0.0009 | 0.5170 | 1.4510 |
Na0.95Cs0.05 | 0.4884 | 0.4875 | 0.0009 | 0.5116 | 1.4592 |
表2Na阴极合金的价电子结构
Table2.Valence electron structures of cathode Na based alloy.
掺杂量x | 原子 | 杂阶 | 掺杂 | 杂阶 | $ \bar{T}_{\rm{m}} $/K | $ {E}_{\mathrm{c}} $/(eV·atom–1) | $ {\bar{E}}_{\mathrm{c}} $/(eV·atom–1) | $\left| { {\Delta E}_{\mathrm{c} } }/{ {E}_{\mathrm{c} } }\right|/{\%}$ | 电势/V |
0 | Na | 3 | — | — | 336.76 | 1.113 | 1.165 | 4.67 | 0.1482 |
0.01 | Na | 2 | K | 4 | 336.64 | 1.111 | 1.164 | 4.77 | 0.1481 |
0.01 | Na | 2 | Rb | 4 | 336.45 | 1.110 | 1.163 | 4.77 | 0.1480 |
0.01 | Na | 2 | Cs | 4 | 336.02 | 1.103 | 1.161 | 5.26 | 0.1478 |
0.02 | Na | 2 | K | 4 | 336.64 | 1.109 | 1.163 | 4.39 | 0.1481 |
0.02 | Na | 2 | Rb | 4 | 336.14 | 1.108 | 1.161 | 4.78 | 0.1478 |
0.02 | Na | 2 | Cs | 4 | 335.29 | 1.110 | 1.158 | 4.32 | 0.1475 |
0.03 | Na | 2 | K | 4 | 336.60 | 1.103 | 1.162 | 5.35 | 0.1480 |
0.03 | Na | 2 | Rb | 4 | 335.85 | 1.109 | 1.159 | 4.51 | 0.1476 |
0.03 | Na | 2 | Cs | 4 | 334.58 | 1.108 | 1.154 | 4.15 | 0.1471 |
0.04 | Na | 2 | K | 4 | 336.57 | 1.107 | 1.162 | 4.97 | 0.1479 |
0.04 | Na | 2 | Rb | 4 | 335.57 | 1.103 | 1.157 | 4.90 | 0.1474 |
0.04 | Na | 2 | Cs | 4 | 333.88 | 1.109 | 1.151 | 3.79 | 0.1467 |
0.05 | Na | 2 | K | 4 | 336.55 | 1.108 | 1.161 | 4.78 | 0.1478 |
0.05 | Na | 2 | Rb | 4 | 335.30 | 1.107 | 1.156 | 4.43 | 0.1472 |
0.05 | Na | 2 | Cs | 4 | 333.20 | 1.108 | 1.147 | 3.52 | 0.1463 |
表3阴极Na1–xIAx合金的熔点、结合能与电势
Table3.Melting point, cohesive energy, and electric potentials of cathode Na1–xIAx alloy.
计算结果表明: 阴极合金Na1–xIAx的熔点与结合能随着IA族原子掺杂量x的增加趋于降低; Cs原子掺杂降低更显著. 其电位能和熔点变化与结合能变化情况相似, 随着K, Rb, Cs原子掺杂量的增加而降低. 当掺杂量相同时, Cs的Ec最低, K时Ec最高. 阴极合金的电势变化情况与熔点和结合能一致. 计算结合能与实验值相符. 实验值由Na和IA族元素的单质的内聚能[32]按成分比例平均获得:

Figure1. Correlations between various electron numbers and melting points of Na1–xIAx cathode alloys.

Figure2. Correlations between various electrons and cohesive energy of Na1–xIAx cathode alloys.

Figure3. Correlations of various electrons and electric potentials for Na1–xIAx anode alloys.
2
3.2.正极合金价电子结构与热、电性能计算
本文选择Pb, Sb, Sn三种元素来设计液态金属电池的阳极合金; Sn, Pb, Sb相对于其他金属, 具有较高的电负性, 适合作为液态金属电池正极材料[33-34]. Na离子输运到阳极, 与阳极金属Pb, Sb, Sn反应形成阳极产物(合金化合物): Na3Sb, NaSn, Na15Sn4, NaPb. 四种合金化合物的晶体结构, 见表4.合金 | 空间群 | a/$\text{?}$ | b/$\text{?}$ | c/$\text{?}$ | 原子 | 占位 | x | y | z |
Sb | 2c | 0.3333 | 0.6666 | 0.2500 | |||||
Na3Sb | P63mmc (194) | 5.355 | 5.355 | 9.496 | Na1 | 2b | 0 | 0 | 0.2500 |
Na2 | 4f | 0.3333 | 0.6666 | 0.5830 | |||||
NaSn | I41/acd (142) | 10.460 | 10.460 | 17.390 | Sn | 32g | 0.0696 | 0.1260 | 0.9362 |
Na1 | 16f | 0.6258 | 0.8758 | 0.1250 | |||||
Na2 | 16e | 0.8724 | 0 | 0.2500 | |||||
Sn | 16c | 0.2083 | 0.2083 | 0.2083 | |||||
Na15Sn4 | I43d (220) | 13.140 | 13.140 | 13.140 | Na1 | 12a | 0.3750 | 0 | 0.2500 |
Na2 | 48e | 0.1270 | 0.1548 | 0.9670 | |||||
Pb | 32g | 0.0696 | 0.1186 | 0.9383 | |||||
NaPb | I41/acd (142) | 10.580 | 10.580 | 17.746 | Na1 | 16e | 0.2500 | 0.1250 | 0.5000 |
Na2 | 16f | 0.1250 | 0.3750 | 0.6250 |
表4正极合金的晶体结构
Table4.Crystal structures of anode alloys.
应用键距差方法计算这四种合金化合物中的所有键距, 计算值与实验相符, 最大键距差都满足判据: |ΔD| ≤ 0.05 ?. 计算结果见表5.
合金 | 键序 | 成键原子 | $ {I}_{\alpha } $ | $ {D}_{\mathrm{uv}}\left({n}_{\alpha }\right) $/$\text{?}$ | $ {\bar{D}}_{\mathrm{uv}}\left({n}_{\alpha }\right)/$$\text{?}$ | $ {n}_{\alpha } $ | |ΔD|/$\text{?}$ |
Na3Sb | 1 | Sb-Na2 | 6 | 3.0975 | 3.0910 | 0.39055 | 0.0065 |
2 | Sb-Na1 | 4 | 3.1685 | 3.1620 | 0.19416 | 0.0065 | |
3 | Na1-Na2 | 4 | 3.1780 | 3.1715 | 0.18030 | 0.0065 | |
4 | Na1-Na1 | 6 | 3.4769 | 3.4704 | 0.03738 | 0.0065 | |
5 | Sb-Na1 | 12 | 3.4813 | 3.4748 | 0.05846 | 0.0065 | |
6 | Na2-Na1 | 12 | 3.4813 | 3.4748 | 0.05630 | 0.0065 | |
7 | Na2-Na1 | 12 | 4.4310 | 4.4245 | 0.00147 | 0.0065 | |
8 | Na2-Na2 | 2 | 4.7575 | 4.7510 | 0.00064 | 0.0065 | |
NaSn | 1 | Sn-Sn | 2 | 2.9748 | 3.0201 | 0.42650 | 0.0453 |
2 | Sn-Sn | 4 | 2.9925 | 3.0378 | 0.39849 | 0.0453 | |
3 | Na1-Sn | 4 | 3.3355 | 3.3808 | 0.07506 | 0.0453 | |
4 | Na1-Sn | 4 | 3.3592 | 3.4045 | 0.06854 | 0.0453 | |
5 | Na2-Sn | 4 | 3.3974 | 3.4427 | 0.13064 | 0.0453 | |
6 | Na2-Sn | 4 | 3.4231 | 3.4684 | 0.11837 | 0.0453 | |
7 | Na1-Sn | 4 | 3.4870 | 3.5323 | 0.04197 | 0.0453 | |
8 | Na2-Sn | 2 | 3.5225 | 3.5678 | 0.08083 | 0.0453 | |
9 | Na2-Sn | 4 | 3.5482 | 3.5935 | 0.07324 | 0.0453 | |
10 | Na1-Na2 | 4 | 3.6148 | 3.6601 | 0.03985 | 0.0453 | |
11 | Na1-Na2 | 4 | 3.6658 | 3.7111 | 0.03277 | 0.0453 | |
12 | Na1-Na1 | 1 | 3.7218 | 3.7671 | 0.01197 | 0.0453 | |
13 | Sn-Sn | 2 | 3.7406 | 3.7859 | 0.02257 | 0.0453 | |
14 | Sn-Sn | 2 | 4.3780 | 4.4233 | 0.00196 | 0.0453 | |
15 | Na1-Na2 | 4 | 4.4919 | 4.5372 | 0.00138 | 0.0453 | |
16 | Na1-Sn | 4 | 4.6674 | 4.7127 | 0.00045 | 0.0453 | |
17 | Na2-Na2 | 1 | 4.7095 | 4.7548 | 0.00132 | 0.0453 | |
Na15Sn4 | 1 | Sn-Na2 | 24 | 3.2378 | 3.2854 | 0.20850 | 0.0476 |
2 | Na2-Na2 | 24 | 3.2624 | 3.3100 | 0.19499 | 0.0476 | |
3 | Na1-Na2 | 24 | 3.3425 | 3.3901 | 0.11017 | 0.0476 | |
4 | Na2-Na2 | 12 | 3.3468 | 3.3944 | 0.14830 | 0.0476 | |
5 | Sn-Na2 | 24 | 3.4049 | 3.4525 | 0.12127 | 0.0476 | |
6 | Sn-Na2 | 24 | 3.4189 | 3.4665 | 0.11589 | 0.0476 | |
7 | Na1-Na2 | 24 | 3.5026 | 3.5502 | 0.06555 | 0.0476 | |
8 | Sn-Na1 | 24 | 3.5482 | 3.5958 | 0.05582 | 0.0476 | |
9 | Na2-Na2 | 24 | 3.8138 | 3.8614 | 0.03261 | 0.047 | |
10 | Na2-Na2 | 24 | 3.9794 | 4.0270 | 0.01906 | 0.0476 | |
11 | Na2-Na2 | 12 | 4.1712 | 4.2188 | 0.01023 | 0.0476 | |
NaPb | 1 | Pb-Pb | 2 | 3.1464 | 3.1452 | 0.33477 | 0.0013 |
2 | Pb-Pb | 4 | 3.1618 | 3.1606 | 0.31556 | 0.0013 | |
3 | Pb-Na2 | 4 | 3.3653 | 3.3641 | 0.19895 | 0.0013 | |
4 | Pb-Na1 | 4 | 3.3888 | 3.3876 | 0.08237 | 0.0013 | |
5 | Pb-Na2 | 4 | 3.4215 | 3.4203 | 0.16035 | 0.0013 | |
6 | Pb-Na2 | 4 | 3.4847 | 3.4835 | 0.12582 | 0.0013 | |
7 | Pb-Na1 | 4 | 3.4929 | 3.4917 | 0.05524 | 0.0013 | |
8 | Pb-Na1 | 4 | 3.5549 | 3.5537 | 0.04354 | 0.0013 | |
9 | Pb-Na1 | 4 | 3.6172 | 3.6160 | 0.03428 | 0.0013 | |
10 | Pb-Pb | 2 | 3.6418 | 3.6406 | 0.05001 | 0.0013 | |
11 | Na1-Na2 | 8 | 3.6967 | 3.6955 | 0.03479 | 0.0013 | |
12 | Na2-Na2 | 1 | 3.7406 | 3.7394 | 0.06488 | 0.0013 | |
13 | Pb-Pb | 2 | 4.4008 | 4.3996 | 0.00272 | 0.0013 | |
14 | Na1-Na2 | 4 | 4.5455 | 4.5443 | 0.00134 | 0.0013 | |
15 | Pb-Na2 | 4 | 4.7513 | 4.7501 | 0.00097 | 0.0013 |
表5阳极合金的键距
Table5.Bond distances of the anode alloy.
四种阳极合金的价电子结构计算结果如表6所示. Na3Sb合金化合物: 2c晶位的Sb取第2杂阶, 只提供价电子; 2b晶位的Na取4杂阶, 只提供价电子; 4f晶位的Na取第2杂阶, 提供晶格电子. NaSn合金化合物: 晶格电子由16e晶位的Na及32g晶位的Sn所提供. Sn也提供价电子, 然而位于16f晶位的Na只提供价电子. Na15Sn4合金化合物: 晶格电子由16c晶位的Sn及48e晶位的Na所提供, 位于12a晶位的Na只提供价电子. NaPb合金化合物: 位于32g晶位的Pb提供价电子和晶格电子; 16e晶位的Na只提供价电子; 位于16f晶位的Na只提晶格电子.
合金 | 原子 | 杂阶 | nc | ns | np | nl | R(1) |
Na3Sb | Sb | 2 | 3.0000 | 0.5694 | 2.4306 | 0 | 1.4279 |
Na1 | 4 | 1.0000 | 0.9982 | 0.0018 | 0 | 1.3070 | |
Na2 | 2 | 0.4614 | 0.4606 | 0.0008 | 0.5386 | 1.4181 | |
NaSn | Sn | 1 | 2.0000 | 0 | 2.0000 | 2.0000 | 1.3990 |
Na1 | 1 | 1.0000 | 0.9982 | 0.0018 | 0 | 1.3070 | |
Na2 | 4 | 0 | 0 | 0 | 1.0000 | 1.5133 | |
Na15Sn4 | Sn | 4 | 3.6638 | 0.8319 | 2.8319 | 0.3362 | 1.3990 |
Na1 | 4 | 1.0000 | 0.9982 | 0.0018 | 0 | 1.3070 | |
Na2 | 3 | 0.5350 | 0.5340 | 0.0010 | 0.4650 | 1.4029 | |
NaPb | Pb | 2 | 2.0962 | 0.0481 | 2.0481 | 1.9038 | 1.4300 |
Na1 | 4 | 1.0000 | 0.9982 | 0.0018 | 0 | 1.3070 | |
Na2 | 1 | 0 | 0 | 0 | 1.0000 | 1.5133 |
表6阳极产物的价电子结构
Table6.Valence electron structures of anode products
依据电子结构参数, 计算阳极合金化合物的热、电性能, 理论熔点与实验相符. 计算结果由表7所示. 计算结果表明: 四种阳极合金化合物的熔点的范围在604.89—1142.96 K之间, NaPb的熔点最低, Na3Sb的熔点最高. 然而电势, Na3Sb最高1.152 V, NaSn的最低0.7343 V.
合金 | Tm/K [35] | $ \bar{T}_{\rm{m}} $/K | |${\Delta {T}_{\mathrm{m} } }/{ {T}_{\mathrm{m} } }$|/% | 电势/V | n | β | Ec/(eV·atom–1) |
Na3Sb | 1129 | 1142.96 | 1.2 | 1.1520 | 4 | 0.60 | 1.766 |
NaSn | 851 | 813.16 | 4.4 | 0.7343 | 5 | 0.60 | 2.103 |
Na15Sn4 | 681 | 746.16 | 9.6 | 0.9074 | 3 | 0.71 | 1.318 |
NaPb | 645 | 630.68 | 2.2 | 0.8263 | 6 | 0.60 | 1.559 |
表7正极合金的熔点、结合能与电势
Table7.Melting point, cohesive energy, and electric potentials of anode alloy.
2
3.3.液态金属电池的开路电压
应用开路电压(18)式系统地计算阴、阳电极之间的开路电压. 表8列出金属电极及其开路电压值. 计算结果表明: Na||Sb电极之间的开路电压最高略高于1 V. Na||Sn电极的开路电压低, 约为前者的一半. 开路电压与平均每原子的晶格电子数成反比, 平均晶格电子数最低的Na3Sb(0.2693), 其开路电压最高; 而平均晶格电子最高的NaSn, 其开路电压则最低.Na1–xIAx | 开路电压/V | |||
Na3Sb | NaSn | Na15Sn4 | NaPb | |
Na | 1.0038 | 0.5861 | 0.7592 | 0.6781 |
Na0.09K0.01 | 1.0039 | 0.5862 | 0.7593 | 0.6782 |
Na0.98K0.02 | 1.0039 | 0.5862 | 0.7593 | 0.6782 |
Na0.97K0.03 | 1.0040 | 0.5863 | 0.7594 | 0.6783 |
Na0.96K0.04 | 1.0041 | 0.5864 | 0.7595 | 0.6784 |
Na0.95K0.05 | 1.0042 | 0.5865 | 0.7596 | 0.6785 |
Na0.99Rb0.01 | 1.0040 | 0.5863 | 0.7594 | 0.6783 |
Na0.98Rb0.02 | 1.0042 | 0.5865 | 0.7596 | 0.6785 |
Na0.97Rb0.03 | 1.0044 | 0.5867 | 0.7598 | 0.6787 |
Na0.96Rb0.04 | 1.0046 | 0.5869 | 0.7600 | 0.6789 |
Na0.95Rb0.05 | 1.0048 | 0.5871 | 0.7602 | 0.6791 |
Na0.99Cs0.01 | 1.0042 | 0.5865 | 0.7596 | 0.6785 |
Na0.98Cs0.02 | 1.0045 | 0.5868 | 0.7599 | 0.6788 |
Na0.97Cs0.03 | 1.0049 | 0.5872 | 0.7603 | 0.6792 |
Na0.96Cs0.04 | 1.0053 | 0.5876 | 0.7607 | 0.6796 |
Na0.95Cs0.05 | 1.0057 | 0.5880 | 0.7611 | 0.6800 |
nl/atom | 0.2693 | 1.2500 | 0.3645 | 1.0682 |
表8电池的开路电压
Table8.Open gate voltages of the battery.
σ | 1 | 2 | 3 | 4 | |
Chσ | 1 | 0.5386 | 0.4650 | 0 | |
Ctσ | 0 | 0.4616 | 0.5350 | 1 | |
nTσ | 1 | 1 | 1 | 1 | |
nlσ | 1 | 0.5386 | 0.4650 | 0 | |
ncσ | 0 | 0.4616 | 0.5350 | 1 | |
Rσ(1) | H | 0.3708 | 0.3289 | 0.3222 | 0.2800 |
Li | 1.3260 | 1.2089 | 1.1440 | 0.9860 | |
Na | 1.5133 | 1.4551 | 1.4308 | 1.3070 | |
K | 1.9628 | 1.8794 | 1.8601 | 1.7820 | |
Rb | 2.0870 | 2.0270 | 2.0175 | 1.9570 | |
Cs | 2.2140 | 2.2260 | 2.2279 | 2.2400 | |
注: $ l, \; m, \;n, \; \tau $: 1 0 0 0 $l{'}, \; m{'}, \;n{'}, \; \tau {'}$: 0.9982 0.0018 0 0 |
表A1IA族元素的乙种杂化表
TableA1.B type hybrid table of IA group
σ | 1 | 2 | 3 | 4 | |
Chσ | 1 | 0.5694 | 0.1983 | 0 | |
Ctσ | 0 | 0.4306 | 0.8017 | 1 | |
nTσ | 3 or 5 | 3 or 5 | 3 or 5 | 3 or 5 | |
nlσ | 0 | 0 | 0 | 0 | |
ncσ | 3 or 5 | 3 or 5 | 3 or 5 | 3 or 5 | |
Rσ (1) | N | 0.7000 | 0.7517 | 0.7973 | 0.8200 |
P | 1.0980 | 1.1173 | 1.1343 | 1.1428 | |
As | 1.1800 | 1.2390 | 1.2911 | 1.3170 | |
Sb | 1.3560 | 1.4279 | 1.4919 | 1.5230 | |
Bi | 1.3990 | 1.4455 | 1.5044 | 1.5290 | |
注: $ l, \; m, \; n, \; \tau $: 1 2 0 1; $ l{'}, \; m{'}, \; n{'}, \; \tau {'} $: 0 3 0 1 |
表A2VA族元素的甲种杂化表
TableA2.A type hybrid table of VA group
σ | 1 | 2 | 3 | 4 | 5 | 6 | |
Chσ | 1 | 0.9502 | 0.8320 | 0.1681 | 0.0481 | 0 | |
Ctσ | 0 | 0.0498 | 0.1680 | 0.8319 | 0.9519 | 1 | |
nTσ | 4 | 4 | 4 | 4 | 4 | 4 | |
nlσ | 2 | 1.9040 | 1.6640 | 0.3360 | 0.0960 | 0 | |
ncσ | 2 | 2.0960 | 2.3360 | 3.6640 | 3.9040 | 4 | |
Rσ(1) | C | 0.7630 | 0.7630 | 0.7630 | 0.7630 | 0.7630 | 0.7630 |
Si | 1.1700 | 1.1700 | 1.1700 | 1.1700 | 1.1700 | 1.1700 | |
Ge | 1.2230 | 1.2230 | 1.2230 | 1.2230 | 1.2230 | 1.2230 | |
Sn | 1.3990 | 1.3990 | 1.3990 | 1.3990 | 1.3990 | 1.3990 | |
Pb | 1.4300 | 1.4300 | 1.4300 | 1.4300 | 1.4300 | 1.4300 | |
注: $ l, \; m, \; n, \; \tau $; 2 2 0 0; $ l{'}, \; m{'}, \; n{'}, \; \tau {'}; $ 1 3 0 1 |
表A3IVA族元素的甲种杂化表
TableA3.A type hybrid table of IVA group