1.Key Laboratory for Laser Plasmas Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 2.Department of Physics, Renmin University of China, Beijing 100872, China 3.Collaborative Innovation Center for IFSA, Shanghai Jiao Tong University, Shanghai 200240, China 4.Department of Physics, National University of Defense Technology, Changsha 410073, China 5.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 6.Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Fund Project:Project supported by the National Key R&D Program of China (Grant Nos. 2018YFA0404802, 2018YFA0404801), the National Natural Science Foundation of China (Grant Nos. 11775144, 11991074, 11975154, 11925405, 11775302, 11875319), the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant Nos. XDA25050100, XDA25050300), and the Fundamental Research Fund for the Central Universities, China (Grant No. 20XNLG01)
Received Date:29 December 2020
Accepted Date:31 January 2021
Available Online:12 April 2021
Published Online:20 April 2021
Abstract:The advent of high-power ultra-short ultra-intense laser pulses opens up the new frontiers of relativistic nonlinear optics, high-field physics, laser-driven inertial confined fusion, etc. In recent years, with the construction of high power laser facilities at a multi-petawatt (PW) level and above, the interaction between laser and matter enters into a new realm of high field physics, where extremely rich nonlinear physics is involved. In addition to classical nonlinear physics involving wave-particle interactions, relativistic effects, and ponderomotive force effects, the quantum electrodynamic (QED) effects occur, such as radiation reaction force, electron-positron pair production, strong γ-ray radiation, QED cascades, and vacuum polarization. This paper presents a brief overview of electron-positron pair creation and bright γ-ray emission driven by the extremely intense laser fields. Keywords:high-intensity laser-plasma interaction/ ultrabright γ-ray radiation/ electron-positron pair production/ quantum electrodynamics (QED)
全文HTML
--> --> --> -->
2.1.基于激光尾场加速器产生超亮伽马辐射源的研究进展与挑战
近年来, 基于等离子体的激光尾波场加速器研究得到了迅速的发展[20-22]. 激光尾波场可以产生比传统射频加速器高三个数量级以上的超高加速场, 从而使得加速长度可以缩短到厘米甚至毫米尺度[23-25]. 这使得台面型高能粒子加速器和超亮高能辐射源成为了可能[6,8]. 目前, 基于激光尾波场加速器的单级电子加速能量已经可以达到8 GeV水平[26], 在未来有望实现将单级加速提高至10 GeV水平以及多级加速达到1 TeV量级的宏伟目标[27]. 基于激光尾波场加速器产生的高能电子, 通过其在尾波场中作剧烈的Betatron振荡运动或在外部电磁场中作同步辐射运动[28-32], 以及与强散射激光场对撞通过Thomson或Compton散射[33-36], 可以产生高亮度的X/γ射线脉冲. 所产生的辐射源脉冲宽度可短至数飞秒, 光子能量一般处于keV—MeV范围内, 峰值亮度约为1019—1023 photons/(s·mm2·mrad2·0.1%BW), 每发次获得的光子总数约为108量级. 最终, 获得的高能辐射源的能量转换效率约为10–6量级. 图2给出了基于激光等离子体方法、同步辐射源以及自由电子激光装置所产生的超亮辐射源峰值亮度和光子能量的范围. 表1列出了在当前实验条件下基于不同物理机制激光驱动的超亮X射线和伽马射线源参数的比较. 近年来, 虽然世界各地科学家付出了很多努力并提出很多方案来增强激光尾波场驱动的Betatron辐射, 例如利用高能粒子束驱动的等离子体尾波场[37,38], 或增加尾波场中电子的横向振荡振幅[39]等, 但是这些方案仍未能解决大幅度提高伽马辐射源的光子能量、能量转换效率和峰值亮度这一重大的科学难题. 然而, 在许多前沿领域研究中往往需要的是光子能量在MeV乃至GeV量级以上的超高亮度伽马射线脉冲, 例如研究光与光作用的基本物理过程[40,41]、探索伽马射线暴[42]、产生与探测基本粒子[43]、研究核结构或光核物理过程[44,45]、检验QED 效应[46]等. 图 2 基于第三代同步辐射源、X射线自由电子激光[47] (a)和激光等离子体方法[8] (b)所产生的X射线辐射源的峰值亮度范围 Figure2. Peak brilliance for different types of X-ray radiation sources from the third-generation synchrotron-radiation sources and XFELs[47] (a) and laser-plasma-based radiation sources[8] (b).
表1当前实验中不同物理机制下激光驱动的X射线源和伽马射线源的性能比较 Table1.Comparison of the performance of laser-driven X-ray and gamma-ray sources under different physical mechanisms in current experiments.
由上文介绍可知, 高能伽马射线源在广泛的科学领域中具有重要的作用, 但想要获得能量在1 MeV以上的超亮伽马射线脉冲仍是一项巨大的挑战. 为了解决这一难题, 进一步将辐射光子的能量提高到GeV量级, 王伟民等[80]提出了一种利用拍瓦强激光脉冲与细丝靶作用的新方案, 如图3所示. 图 3 (a)丝靶方案的示意图; (b) X射线自由电子激光装置、同步辐射装置、基于激光尾场加速器的Betatron或Compton散射光源以及该细丝靶方案产生的伽马射线源光子能量和峰值亮度的范围; (c), (d)在不同驱动激光功率条件下所产生的伽马射线源的角分布和能谱分布, 图示中“ ×10”表示光子数放大10倍[80] Figure3. (a) Schematic diagram of the wire scheme; (b) chart of photon energy and brilliance of gamma-rays generated from our wire scheme, XFEL, synchrotron radiation facilities, and betatron radiation and Compton scattering based on LWFA; the angular distributions (c) and energy spectra (d) of the generated gamma-rays under different laser powers, where “ ×10” in the legend indicates the photon number multiplied by a factor of 10[80].