1.School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China 2.Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, China Academy of Sciences, Beijing 100049, China 3.Engineering Research Center of High Power Solid State Lighting Application System, Tianjin 300387, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11475212, 11505211, 61204008)
Received Date:18 October 2020
Accepted Date:21 November 2020
Available Online:09 March 2021
Published Online:20 March 2021
Abstract:First principles calculations are performed to explore the electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures after biaxial strain has been applied. The type-II band alignments with indirect band gap are obtained in the most stable BlueP/X Te2 heterostructures, in which the photon-generated carriers can be effectively separated spatially. The BlueP/MoTe2 and BlueP/WTe2 heterostructures both have appreciable absorption of infrared light, while the shielding property is enhanced. The increase of biaxial compressive strain induces indirect-direct band gap transition and semiconductor-metal transition when a certain compressive strain is imposed on the heterostructures, moreover, the band gap of the heterostructures shows approximately linear decrease with the compressive strain increasing, and they undergo a transition from indirect band gap type-II to indirect band gap type-I with the increase of biaxial tensile strain. These characteristics provide an attractive possibility of obtaining novel multifunctional devices. We also find that the optical properties of BlueP/X Te2 heterostructures can be effectively modulated by biaxial strain. With the increase of compression strain, the absorption edge is red-shifted, the response of light absorption extends to the mid-infrared light and the absorption coefficient increases to 10–5 cm–1 for the two heterostructures. The BlueP/MoTe2 shows stronger light absorption response than the BlueP/WTe2 in the mid-infrared to infrared region and the ε1(0) increases significantly. The BlueP/X Te2 heterostructures exhibit modulation of their band alignment and optical properties by applied biaxial strain. The calculation results not only pave the way for experimental research but also indicate the great potential applications of BlueP/XTe2 van der Waals heterostructures in narrow band gap mid-infrared semiconductor materials and photoelectric devices. Keywords:BlueP/X Te2 (X = Mo, W) van der Waals heterostructures/ electronic structure/ optical properties/ strain
表1单层BlueP, MoTe2和WTe2及异质结BlueP/X Te2的晶格常数、带隙、晶格失配度, 以及异质结BlueP/X Te2的层间距 Table1.Lattice constants a, band gaps Eg, lattice mismatch σ of BlueP, MoTe2 and WTe2 monolayers and BlueP/X Te2 heterostructures, and interlayer distance d0 of BlueP/X Te2 heterostructures.
图 1 单层BlueP与X Te2的能带结构图和态密度图 (a) BlueP; (b) MoTe2; (c) WTe2 Figure1. Energy band structures and density of states of BlueP and X Te2 monolayer: (a) BlueP; (b) MoTe2; (c) WTe2.
图 2 BlueP/X Te2异质结模型的侧视图和俯视图 (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2 Figure2. Side and top view of BlueP/X Te2 van der Waals heterostructures: (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2
式中$ {E}_{{\rm{BlueP}}/{X{\rm{Te}}}_{2}} $, $ {E}_{{X{\rm{Te}}}_{2}}, {E}_{{\rm{BlueP}}} $分别为异质结BlueP/X Te2、单层X Te2和BlueP的总能; N为BlueP单位晶胞数. 负值Eb表示形成了稳定的界面结合. 图3为BlueP/X Te2异质结结合能随层间距的变化. 计算结果表明, BlueP/X Te2异质结层间距为3.30 ? (BlueP/MoTe2)和3.40 ? (BlueP/WTe2)时, 二者分别具有最低结合能–29 meV/unit-cell (BlueP/MoTe2)和–108 meV/unit-cell (BlueP/WTe2), 均能形成最稳定的界面结合, 而BlueP/WTe2较BlueP/MoTe2能够形成更稳定的异质结. 上述结果分别与异质结[50-54]体系结合能量级相同, 表明BlueP/X Te2异质结层间形成了弱的范德瓦耳斯力, 具有能量稳定性且实验制备可行. 本文后续的结果与讨论均基于上述层间距对应的稳定结构模型. 图 3 BlueP/X Te2异质结结合能Eb随层间距d0的变化 (a) BlueP/MoTe2; (b) BlueP/WTe2 Figure3. Binding energy of the BlueP/X Te2 van der Waals heterostructures as a function of the distance d0 between the BlueP and X Te2 monolayers: (a) BlueP/MoTe2; (b) BlueP/WTe2.
23.2.BlueP/X Te2异质结电子结构 -->
3.2.BlueP/X Te2异质结电子结构
图4为BlueP/XTe2异质结的能带结构、总态密度、能带排列及CBM和VBM分解电荷密度图. 由于蓝磷层为间接能带结构, 其对异质结的层间耦合作用使得BlueP/X Te2均为间接带隙半导体. 如图4(a)和图4(e)能带结构图所示, 二者的CBM和VBM均分别位于M点和G点, 带隙宽度分别为0.60 eV (BlueP/MoTe2)和0.713 eV (BlueP/WTe2). 这是由于形成异质结后, 提高了G点价带的能级, 降低了M点导带的能级, 且BlueP表现出比MoTe2 (WTe2)更低的导带能级, 使BlueP与MoTe2 (WTe2)的价带和导带间产生弱相互作用. 因此, 二者能带结构的CBM主要表现为BlueP在G点与M点间的特征, 而VBM均表现出单层MoTe2和WTe2的特征. 如图4(b)和图4(f)态密度图所示, 与单层X Te2态密度相比, 形成异质结后X Te2的态密度向低能态移动, 体系的CBM均主要源于BlueP的贡献, 而VBM分别主要源于MoTe2和WTe2. 综上所述, 在BlueP/MoTe2和BlueP/WTe2体系均形成了间接带隙的type-II能带排列, 其CBM均位于M点的BlueP, VBM位于G点的X Te2中, 仅BlueP/MoTe2的带隙值略小于BlueP/WTe2, 能带排列如图4(c)和图4(g)所示. 图4(d)和图4(h)给出了BlueP/X Te2的CBM和VBM的分解电荷密度图, 图示结果更直观地说明BlueP/X Te2异质结是CBM源于BuleP, 而VBM源于X Te2的type-II能带排列. 由于BlueP与X Te2价带和导带的相对独立, 及其层间强耦合作用缩短了异质结区的能量差, 使异质结比单层材料具有更长的波长响应能力. 若异质结处于光激发状态, 光生电子通过X Te2价带到BlueP导带的直接跃迁, 缩短了带间跃迁的能量差(带间能量差分别为BlueP/MoTe2~0.60 eV, BlueP/WTe2~0.713 eV). 相较于单层BlueP与X Te2, 异质结拓宽了光谱响应范围. 同时, 由于BlueP与X Te2费米能级的差异, 在异质结界面处产生接触电势差, 驱动电荷转移并形成空间电荷区, 产生内建电场, 使得光生电子和空穴分别快速转移至BlueP层的CBM和X Te2层VBM, 从而自发地在空间上实现光生电子和空穴的分离与收集, 极大地促进光生载流子的生成, 进而能够提升异质结的光电特性, 因此二者作为设计和制造新型光电器件的新型材料具有令人期待的应用前景. 图 4 BlueP/X Te2异质结能带结构、分态密度、能带排列及异质结中CBM和VBM分解电荷密度图 (a)?(d) BlueP/MoTe2; (e)?(h) BlueP/WTe2 Figure4. Energy band structures, partial density of states (PDOS), band alignment and the band decomposed charge density of CBM and VBM in heterostructures: (a)?(d) BlueP/MoTe2; (e)?(h) BlueP/WTe2.
23.3.BlueP/X Te2异质结应力调控研究 -->
3.3.BlueP/X Te2异质结应力调控研究
对BlueP/X Te2异质结沿a和b轴方向施加双轴应力, 施加的应力与应变间存在对应关系为$\varepsilon = {\left(a-{a}_{0}\right)}/{{a}_{0}}\times 100{\text{%}}$, 式中$ {a}_{0} $为结构优化后体系未施加应力时晶格常数, $\varepsilon > 0\; (\varepsilon < 0)$表示体系施加拉伸(压缩)应力. 图5为BlueP/X Te2异质结体系总能与双轴应变关系图, $ \Delta E={E}_{\rm{\varepsilon }}-{E}_{0} $[55], 式中$ {E}_{0} $与$ {E}_{\rm{\varepsilon }} $分别为施加应力前后体系的总能. 若$ \Delta E>0 $, 则表明异质结施加应力后体系仍处于稳定状态. 如图5所示, 应力在从–8%到+8%的压缩和拉伸变化区间内BlueP/X Te2体系的$ \Delta E>0 $, 且随着应力的增加$ \Delta E $值逐渐增大, 并均未出现能量突变点, 说明BlueP/X Te2体系施加应力后晶格有序性未受到破坏, 体系仍处于稳定状态. 图 5 BlueP/X Te2异质结体系总能与双轴应变关系图 Figure5. Total energy of the BlueP/X Te2 van der Waals heterostructures as a function of the biaxial strain ε