First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures
1.School of Physics and Electronics, Central South University, Changsha 410083, China 2.Institute of Super-microstructure and Ultrafast Process in Advanced Materials, Changsha 410083, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 21673296) and the Central South University Free Exploration Innovation Project, China (Grant No. 2020zzts371).
Received Date:02 August 2020
Accepted Date:23 October 2020
Available Online:25 February 2021
Published Online:05 March 2021
Abstract:Heterostructure engineering is an effective strategy to improve the optoelectronic properties of semiconductor materials. We propose a van der Waals (vdW) heterostructure based on perovskite CsPbX3 (X = Cl, Br, I) and two-dimensional penta-graphene (PG), and investigate the stabilities of two kinds of interface contacts (Pb-X and Cs-X) by first-principles calculations. And we also study the electronic structures and optoelectronic properties of CsPbX3-PG heterostructures with stabler Pb-X interface. Our results show that all the CsPbX3 (X = Cl, Br, I)-PG heterostructures possess the type-II band arrangement, that the energy level gap is gradually narrowed from Cl to I, and that there are good photogenerated carrier separation ability and charge transport property. Moreover, the absorption spectrum of CsPbX3-PG heterostructures can be broadened and the optical absorption ability is effectively improved. The power conversion efficiency (PCE) of CsPbX3-PG can increase up to 21% given by theoretical estimation. These results indicate that the optoelectronic properties of the all-inorganic metal halide perovskite CsPbX3-PG heterostructures can be effectively improved, which would become a potential candidate for high-performance photoelectric conversion devices.s. Keywords:perovskite CsPbX3/ penta-graphene/ van der Waals heterostructure/ optoelectronic property
计算得到立方块体钙钛矿CsPbCl3, CsPbBr3, CsPbI3的晶格常数分别为a = b = c = 5.733 ?, a = b = c = 5.993 ?, a = b = c = 6.417 ?, PG单胞的晶格常数为a = b = 3.64 ?. 异质结中CsPbX3为四层八面体结构, 其性能与立方块体CsPbX3相似, 且四层CsPbX3和单层PG构成vdW异质结时旋转角度为26.57°. 在CsPbX3-PG异质结中, 由于CsPbX3具有两种不同的界面(Pb-X界面和Cs-X界面), CsPbX3可以通过不同界面与PG进行界面接触, 通过计算最小化表面结合能, 可以选择更稳定、更合理的异质结. 计算界面形成能公式为
$\Delta E = ({{{E_{{\rm{TOT}}}} - {E_{{\rm{PG}}}} - {E_{{\rm{CsPb}}{X_{\rm{3}}}}}}})/{S},$
表1CsPbX3-PG异质结的晶格失配度和表面结合能 Table1.Lattice mismatch ratio and surface binding energyof PbX and CsX interface in CsPbX3-PG heterostructures.
图 1 三种CsPbX3-PG异质结的顶部和侧面视图 (a), (b) CsPbCl3-PG; (c), (d) CsPbBr3-PG; (e), (f) CsPbI3-PG Figure1. Top and side views of the CsPbX3-PG heterostructure: (a), (b) CsPbCl3-PG; (c), (d) CsPbBr3-PG; (e) (f) CsPbI3-PG.
为了验证CsPbX3-PG在室温下的动力学稳定性, 在正则系综(NVT)下进行了分子动力学(AIMD)模拟. 温度和能量随着模拟时间的变化如图2所示, 在5000 fs时间内, 这三个异质结能量变化极小, 温度振荡也很小并具有周期性变化, 表明研究的CsPbX3-PG体系满足动力学稳定性和热稳定性. 图 2 分析动力学(AIMD)模拟, 能量和温度在300 K的相对于时间的波动 (a) CsPbCl3-PG异质结; (b) CsPbBr3-PG异质结; (c) CsPbI3-PG异质结 Figure2. Energy and temperature fluctuation respect to time in AIMD simulation at 300 K: (a) CsPbCl3-PG heterostructure; (b) CsPbBr3-PG heterostructure; (c) CsPbI3-PG heterostructure.
23.2.电子结构 -->
3.2.电子结构
电子能带结构对研究异质结的界面性质至关重要, 接下来分析CsPbX3-PG半导体异质结的电子结构性质. 图3(a)—图3(c)分别给出了计算的CsPbCl3-PG, CsPbBr3-PG, CsPbI3-PG异质结的能带结构图, 红线和蓝线分别表示PG单层和CsPbX3单层的能带结构图, 费米能级在图中设置为零. 结果表明, CsPbX3-PG异质结的电子能带结构基本可以看成是两种材料能带成分的组合, CsPbX3在接触状态下保持其直接带隙特性, PG单层保持其准直接带隙特性, 并且导带底(CBM)由PG贡献, 价带顶(VBM)由CsPbX3贡献, CsPbCl3-PG, CsPbBr3-PG和CsPbI3-PG异质结均为典型的Ⅱ型能带排列, 表明CsPbX3-PG异质结具有较好的光生载流子分离能力. 计算的单层PG, CsPbX3和PG-CsPbX3异质结的带隙如表2所列, 分别处于接触前状态和接触状态. 本文主要考虑的是异质结堆叠和界面相互作用的影响, 接触前后状态取的均是异质结中经晶格应变后的超胞状态, 结果显示两种状态下PG和CsPbX3带隙数值相差很小, 尤其是PG的带隙保持一致. 这说明层与层之间的相互作用非常弱, PG单层和CsPbX3在异质结中保持了单层的优异性能, PG改善了CsPbX3-PG的电子结构却不影响CsPbX3的本征特性. 图 3 (a) CsPbCl3-PG, (b) CsPbBr3-PG, (c) CsPbI3-PG异质结的能带分解图, 红, 蓝线分别代表代CsPbX3和PG单层的能带 Figure3. Electronic band structures of heterostructures: (a) CsPbCl3-PG; (b) CsPbBr3-PG; (c) CsPbI3-PG. The red and blue lines represent the energy bands of CsPbX3 slabs and PG monolayer, respectively.
X
接触前(单结构)
接触态(异质结)
PG
CsPbX3
PG
CsPbX3
CsPbX3-PG
Cl
2.21
2.21
2.21
2.62
1.30
Br
2.28
1.77
2.28
1.79
1.62
I
2.36
1.52
2.36
1.30
1.20
表2CsPbX3-PG异质结接触前后带隙数据 Table2.Calculated band gaps of PG monolayer, CsPbX3 slabs and CsPbX3-PG heterostructures in the pre-contact state (left) and contact state (right) by PBE functional.
探索界面电荷转移对研究半导体异质结的界面性质具有重要意义. 图4中给出了CsPbX3-PG异质结构在接触前状态和接触状态下的能级排列图, 在未接触状态下, 真空能级(Ev)设置为零; 在接触状态下, 费米能级(Ef)设置为零. 图4显示了CsPbX3-PG异质结构能带类型均为II型排列, 表明CsPbX3-PG异质结构将具有较好的光生载流子分离能力. 对于CsPbX3体系, HSE06泛函预测的带隙明显高估, SOC预测的带隙则是会被低估, 而SOC对CsPbX3体系的带边可能会有较大影响[47-49], 因此在使用PBE计算能级排列的基础上, 再采用HSE + SOC测试了CsPbCl3-PG, CsPbBr3-PG, CsPbI3-PG异质结带边的能量本征值位置, 如图4(g)—图4(i)所示. 对比PBE的结果图4(d)—图4(f)可知, 两种方法计算的带隙值相差较小(CsPbCl3: 约0.3 eV, CsPbBr3: 约0.2 eV, CsPbI3: 约0.2 eV), 并且能带排列结果均为II型排列, 表明异质结具有较好的光生载流子分离能力. 图 4 CsPbX3-PG异质结的能级排列图 (a)—(c)接触前, (d)—(f) PBE计算的接触状态, (g)—(i) HSE + SOC验证的接触状态下VBM和CBM点能量本征值. 其中, 蓝色块表示PG单层和红色块分别表示CsPbX3(X = Cl, Br, I)的能级 Figure4. The energy level alignment diagram of the CsPbX3-PG heterostructures: (a)–(c) the pre-contact states, (d)–(f) PBE calculated contact states and (g)–(i) HSE + SOC validated the energy eigenvalues of VBM and CBM points in the contact states. The blue blocks represent the energy level of PG monolayer and the red blocks represent the energy level of CsPbX3 slabs [X = Cl, Br, I (from left to right)].
为了阐明CsPbX3-PG异质结界面电荷转移的详细性质, 计算了异质结沿z方向的平面平均微分电荷密度ρ(z), 用于分析结构优化后异质结的界面耦合情况. CsPbX3-PG异质结界面电荷转移性质如图5(a)—图5(f)所示, 沿z轴的平面平均电荷密度差和三维电荷密度差可由如下公式计算[24]: 图 5 沿Z方向上的平面平均差分电荷密度 (a) CsPbCl3-PG, (c) CsPbBr3-PG, (e) CsPbI3-PG异质结(红色区域为PG, 蓝色区域为CsPbX3); 3D差分电荷密度 (b) CsPbCl3-PG, (d) CsPbBr3-PG, (f) CsPbI3-PG异质结(黄色代表增益电子, 绿色代表损耗电子) Figure5. The plane-averaged electron density difference along Z direction of (a) CsPbCl3-PG, (c) CsPbBr3-PG, (e) CsPbI3-PG. 3D charge density difference of heterostructures: (b) CsPbCl3-PG, (d) CsPbBr3-PG, (f) CsPbI3-PG. (Yellow represents gain electrons, and green represents lose electrons).
其中, 带隙填充系数假定为0.65, 分子中的积分是短路电流Jsc, 使用100%的限制外部量子效率(EQE)进行计算, 而分母$P(\hbar \varpi )$是在光子能量$\hbar \varpi $的AM1.5太阳能通量, 图7所示为等高曲线范围. ${E_{\rm{g}}} - \Delta {E_{\rm{C}}} - 0.3$项是最大开路电压(Voc)的估计值, 由有效界面间隙减去0.3 eV估算, 以解释能量转换动力学, Eg是异质结中供体的光学带隙, $\Delta {E_{\rm{C}}}$是供受体间的导带/价带偏移量conduction/valence band offset(CBO/VBO). 因此, 效率$\eta $估计为入射能量通量在100% EQE范围内标准化的产物${\rm{FF}} \cdot {V_{{\rm{OC}}}} \cdot {J_{{\rm{SC}}}}$[52-54]. 图 7 CsPbX3-PG(X=Cl, Br, I)异质结功率转换效率, 带隙和导带偏移的函数关系曲线. CsPbBr3-PG, 红色圆形; CsPbI3-PG: 红色三角形 Figure7. Power conversion efficiency contour plot as a function of the donor optical gap and conduction band offset ΔEC. Red circle and triangle represent CsPbBr3-PG and CsPbI3-PG, respectively.