1.Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China 2.Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 11874113, 61574037) and Natural Science Foundation of Fujian Province of China (Grant No. 2020J02018)
Received Date:01 August 2020
Accepted Date:23 September 2020
Available Online:04 February 2021
Published Online:20 February 2021
Abstract:MnBi2Te4 as an intrinsic magnetic topological insulator has attracted lots of attention. Since the electronic structure of MnBi2Te4 is quite sensitive to the change of lattice constant, here in this work, we use a first-principles method based on density functional theory to implement the isometric strain control of the electronic structure of MnBi2Te4 antiferromagnetic bulk. The so-called isometric strain is to change the lattice constant under the premise that the volume of the crystal remains unchanged. Our results show that the energy band structure of the system changes sensitively under the action of isometric tension and compression strains of the material, and the system has an insulator-metal phase transition. In particular, when a certain strain is applied, the conduction band and the valence band cross at Γ, and the system presents a zero band gap state. Under this strain, the band inversion can still be observed, showing non-trivial energy band topological properties. According to the charge density and local charge density maps under different strains, it is found that the isometric strain will affect the interlayer spacing of the system's seven-fold layers. The isometric compression and tensile strain can increase and reduce the Te atomic layer spacing respectively, indicating that isometric compression is beneficial to reducing the antiferromagnetic interlayer coupling. Through the control of isometric pressure and strain, we can master the change law of the electronic structure of MnBi2Te4, which has important guiding significance for the research of physical properties and experimental preparation of the intrinsic magnetic topological insulator MnBi2Te4. Keywords:MnBi2Te4/ stress-strain/ intrinsic magnetic topological insulator/ first-principles
基于密度泛函理论(density functional theory, DFT)的第一性原理计算主要通过维也纳从头算模拟程序包(Vienna ab initio simulation package, VASP)[56,57]使用投影缀加平面波(projected augmented wave, PAW)[58]方法实现, 其中平面波截断能选取350 eV. 同时利用Perdew-Burke-Ernzerhof型广义梯度近似(generalized gradient approximation, GGA)的交换关联函数[59]进行计算, 并用加U方法处理Mn原子的3d轨道, 其中U值取4 eV[8]. 图1(a)所示为MnBi2Te4的晶胞结构, 其传统晶胞属于R$ \bar{3} $m空间群(No. 166), 晶格常数为a = b = 4.36 ?和c = 40.6 ?. 我们计算的反铁磁单胞由红色虚线浅蓝色填充框标出, 并且上下自旋通过箭头表示出来. 包含所有高对称点的第一布里渊区由图1(c)给出. 图 1 (a) MnBi2Te4反铁磁结构(上下自旋由不同颜色的箭头标出)及其(b)顶部视图; (c) 包含能带计算过程每个高对称点的第一布里渊区 Figure1. (a) MnBi2Te4 antiferromagnetic structure (the upper and lower spins are marked by arrows of different colors) and its (b) top view; (c) the first Brillouin zone containing each high symmetry point in the energy band calculation process.
3.结果与分析首先计算出等体积拉伸和压缩应变下的能带结构演化图[60], 如图2和图3所示, 其中费米能级用浅蓝色点线表示, 价带顶(valence band maximum, VBM)和导带底(conduction band minimum, CBM)分别用红、蓝颜色的球标注. 由图2可知, 低于5%应变的CBM都在Z点. 由于费米能级附近电子态的竞争, VBM由最初的Z点变为$ {\varGamma} $附近, 并且$ {\varGamma} $-L之间价带上的一点(图中用五角星标注)随着拉伸应变的增加而逐渐升高, 直至$ \eta$ = 6%突破费米能级变为金属. 而这种竞争恰是由应变导致的, 它给反铁磁块体结构实现绝缘体相与金属相间的转变提供了可能, 最近相关研究也表明MnBi2Te4可通过加压实现相转变[38,39]. 图 2 (a)?(f)等体积拉伸应变作用下的能带结构图 Figure2. (a)?(f) The band structure diagram under isometric tensile strains.
图 3 (a)?(f) 等体积压缩应变作用下的能带结构图 Figure3. (a)?(f) The band structure diagram under isometric compression strains.
图3为对体系施加不同程度的等体积压缩应变后得到的能带图. 低程度压缩应变(–3%以内) 体系呈直接带隙(均在${\varGamma}$点), –4%以后VBM开始偏离${\varGamma}$点而变为间接带隙(由图3(d)和图3(e)的嵌入图可明显看到). –6%往后的应变呈现F点导带逐渐下降、${\varGamma}$点处的价带逐渐上升,并先后交于费米能级成为金属, –10% ${\varGamma}$点的导带和价带相交叉如图3(f)所示. 特别值得注意的是, 在–2%时(见图2(b))可发现带隙极小, 于是在其附近进行加压调控, 得到导带与价带交叉的特殊应变值, 具体将在后文讨论. 对图2和图3综合分析发现, 可通过等体积应变调控MnBi2Te4的能带结构, 低应变尺度下体系为绝缘体, 其CBM, VBM随应变在${\varGamma}$点与Z点附近变化并分别在拉伸和压缩应变下存在明显的电子态竞争和能带交叉的现象, 实现了应变调控绝缘体-金属间相变的预期目标. 前面介绍了应变调控下的能带结构变化, 现在通过能量和应变的变化曲线来更直观地了解其变化规律. 从图4(a)的应变-能量图可以看出, 无应变体系的能量最低, 但与带交叉的–2.26%相差不多, 约为0.1 eV. 图4(b)给出了结构优化后单胞的晶格常数a(b)及c随应变的变化规律, 呈现线性且此消彼长的趋势也正是所采用的等体积应变的效果. 特别地, 图4(c)和图4(d)清晰表示出体系CBM, VBM和带隙随等体积应变的变化规律. 由图4(c)可见, 拉伸应变能带带隙自无应变后先变大后减小, 在2%左右为最大, 在5%后带隙逐渐缩小并趋于零, 并且在6%应变时费米能级穿过价带顶变为金属(从图2(f)可明显看出). 然而, 等体积压缩应变的能隙呈现先减小后增大, 最后再持续减小的趋势. 结合图4(d)清晰可见, 在–2.26%处CBM与VBM都在$ {\varGamma} $点且刚好相接, 带隙为0 eV. 图 4 (a) 体系总能随应变的变化趋势; (b)单胞晶格常数随应变的演变规律; (c)等体积应变对带隙的影响; (d)图(c)虚线框处的局部放大图(CBM和VBM随应变的演变趋势也被给出) Figure4. (a) Variation trend of total energy of the system with strain; (b) evolution regular of unit cell lattice constant with strain; (c) the effect of isometric strain on the band gap; (d) part a enlarged view of the dotted frame in Fig.4 (c). (The evolution trends of the bottom of CBM and VBM with strain are also given)
为了进一步讨论等体积应变对体系原子之间电荷分布情况的影响, 特将$ \pm $5%, $ \pm $10%及无应变体系的电荷密度进行对比, 如图5所示. 分别选择典型的(1$ \bar{1} $0)和(001)晶面进行分析, 图5中对三种原子进行示意, 结构图详见图1(a). MnBi2Te4铁磁单胞可看成两个Te-Bi-Te层中间插入一个Mn层的七倍层构成, 七倍层间受范德华力作用. 从电荷密度二维图中发现该体系七倍层内作用较强成离子键, 但七倍层间作用较弱. 由(1$ \bar{1} $0)面还可以看到, 施加等体积拉伸应变使得远离Mn层的两个Te层逐渐靠近(图5中灰色虚线标出), 呈现键上有电荷分布特征, 表示它们之间相互作用增强, 反之压缩应变使二者相互远离, 作用减弱(两Te层在图7(a)用虚线框标注出). 同样, 由图5中(001)晶面也可以发现, 压缩应变使Te与Bi间作用增强, 但拉伸由于七倍层间两Te层靠近反而使其与七倍层内的Bi间作用减弱. 图 5 不同等体积应变作用后的电荷密度图 (a) –10%; (b) –5%; (c) 无应变体系; (d) 5%; (e) 10%. Mn, Bi, Te原子的位置用不同颜色的球对应标出; (1$\bar{1}$0)和(001)晶面距离原点所在平面分别为0 $\times \;{d}$及0.41 $\times\;{d}$ (对于饱和度: 红色取13%表示电荷增加, 蓝色取7%代表电荷减少) Figure5. Charge density diagram after different isometric strains: (a) –10%; (b) –5%; (c) unstrained system; (d) 5%; (e) 10%. The positions of Mn, Bi and Te atoms are correspondingly marked with balls of different colors; The crystal plane (1 $ \bar{1} $ 0) and (001) are 0 $\times\;{d}$ and 0.41 $\times\;{d}$ respectively. For saturation: red takes 13% means charge increase, blue takes 7% means charge decrease
为了进一步解释带隙等费米能级附近电子结构的内在机理, 对费米面附近最高价带的局部电荷密度(本征态波函数的模方), 计算局部电荷密度可以用来说明费米面附近电子结构受等体积应变影响的事实. 图6所示为最高价带的电荷密度受等体积应变的变化演变图, 并且计算了ab平面平均密度曲线(沿着c方向). 从图6可以看到, 等体积应变确实对费米面附近的电子结构有影响. 虽然随着c轴的减小, 最高价带上的局域电荷密度强度有所减弱, 但是Te-Te原子之间成键(平均面电荷密度曲线纵轴5—7 ?位置)的强度相对变大, 并且Te-Te层的面平均密度表现为愈加对称(尤其是5%应变下的结果). 这与上述的二维电荷密度图结果一致, 都揭示了等体积拉伸应变有利于增强Te-Te层之间的耦合的本质结果. 综上所述, 研究结果表明应变对原为范德华力作用的两个Te层影响颇大, 对a (b)轴的拉伸会加强七倍层间耦合, 反之减弱. 图 6 最高价带的局部电荷密度随不同等体积应变的演变图(并相应给出ab平面的平均面电荷密度曲线) (图中三维局部电荷密度的isosurface值均取0.0006 e/bohr3, 黄色代表电荷积累, 蓝色表示电荷减少) Figure6. The evolution diagram of the local charge density of the highest valence band with different isometric strains and correspondingly give the average surface charge density curve of the ab plane. (The isosurface values of the three-dimensional local charge density in the figure are all 0.0006 e/bohr3. The yellow color represents the accumulation of charge, while the blue color represents the decrease of the charge)
上面提及七倍层层间距随应变发生变化, 下面对层间距进行具体分析, 图7(a)给出了七倍层及其层间距示意图. 图7(b)特别直观地表达出等体积压缩应变使七倍层层间距增大, 并从图7(c)看出压缩应变使Te-Te原子间距也明显增大, 意味着其范德华力作用减弱; 而等体积拉伸应变减小了七倍层层间距, 即使Te-Te距离因为a (b)轴的拉伸而略显变大, 但是层间垂直距离属实明显变小, 故而增强了层间作用. 图 7 (a)七倍层间距结构示意图; (b)七倍层层间距和(c)Te-Te原子间距随应变的变化规律曲线. 图(b)和图(c)中具体距离也相应标出 Figure7. (a) Schematic diagram of the structure of the sevenfold interval; Variation of the curve of (b) the interval of the sevenfold interval and (c) Te-Te interatomic distance with strain. The specific distance in Fig. (b) and Fig. (c) is also marked accordingly
针对能带出现的一个有趣的零带隙交叉点(应变–2.26%), 现着重对其进行计算分析. 理论上讲, 反铁磁存在时间反演对称性的破缺, 不能形成受Z2保护的拓扑绝缘体. 然而MnBi2Te4却满足$ S = T\tau_{1/2} $对称性[10], 它同时具有时间反演对称和空间平移对称性质. 由于平移算符的存在, 在其满足S对称性的表面能够形成受拓扑保护的狄拉克锥, 而不受S对称性保护的表面(001)要打开能隙[10]. 又据近年的Nature文章报道, 已在MnBi2Te4中实现磁性打开带隙的反铁磁拓扑绝缘体、底表面和顶表面绝缘[61,62], 看似已不能在(001)面出现狄拉克锥. 然而, 通过施加等体积应变, 即在ab平面受到2.26%压缩应变后可以在$\varGamma$处实现导带与价带交叉, 此时带隙刚好处于0 eV的临界点, 即可能存在狄拉克锥. 此结果与近期南方科技大学的结论高度一致[63]. 如图8(a)所示, 我们发现在$\varGamma$处出现交叉(直接带隙), 而从图8(b)看出费米能级附近的态密度主要由Te跟Bi元素贡献. 于是进一步计算了其能带投影和分波态密度, 发现费米能级附近主要由Te及Bi两种元素的p轨道贡献. 结合图8(c)和图8(d)可以看出, 导带主要由Bi-p轨道构成, 价带主要由Te-p轨道贡献, 并且从图8(d)可明显看出发生能带反转. 这种兼具反铁磁序并且能带反转的结果与其他文献一致[8,61]. 特别地, 从图8(b)和图8(d)两幅态密度图还看到, 价带大约在–0.6 eV附近出现一个尖峰, 表明此时三种元素成键较强, 相互作用明显. 图 8 施加2.26%等体积压缩应变时的(a) 总能带结构图, (b) 每类原子的态密度及总态密度, (c) Bi和Te的p轨道能带投影, (d) Bi-p和Te-p轨道分波态密度. 图(c)中含$\varGamma$点费米能级附近的放大图, 由虚线框标出并由箭头指示 Figure8. When 2.26% isometric compressive strain is applied: (a) Structure diagram of the total energy band; (b) state density and total state density of each type of atom; (c) the p orbital energy band projection of Bi and Te; (d) Bi-p and Te-porbit partial wave density. Fig. (c) contains an enlarged view of the $\varGamma$ point near the Fermi level, marked by a dotted frame and indicated by an arrow
最后, 为了比较能带交叉点相应的特殊应变对初始结构的电荷影响, 对–2.26%等体积应变与无应变体系进行差分电荷密度计算, 具体公式为$ \Delta\rho = \rho_{\rm {perfect}}-\rho_{\rm {strain}} $, 图9(a)和图9(b)所示分别为差分电荷密度三维、二维图. 可以看出, 相比–2.26%等体积应变, 无应变体系的Mn原子附近呈纵向得电子而横向失去电子趋势, Te原子在七倍层间得电子, 七倍层内失电子, 说明该等体积压缩应变促使七倍层间的电荷分布减少, 相互作用减弱, 正如前面所述, 这是挤压ab平面而拉伸c轴造成的电荷转移结果, 等体积压缩应变有助于减弱七倍层边界Te原子层的相互作用, 从而与七倍层内Bi原子成键更稳定. 图 9 –2.26%等体积应变作用后同无应变体系2 × 2 × 2超胞的差分电荷密度 (a)三维图(黄色表电荷增加, 而蓝色表电荷减少); (b) (100)晶面切面二维图(红色和蓝色分别表示电荷增加及减少, 饱和度的值由图中标尺标出). 图(a)取isosurface = 0.008 e/bohr3, 图(b)的切面取原点所在平面(即0 × d) Figure9. Differential charge density of –2.26% isometric strain and unstrained system: (a) Three dimensinal graph (yellow color represents charge accumulation and blue color charge depletion); (b) two dimensional drawing of crystal plane (100). (Red and blue indicate charge increase and decrease respectively. The values of saturation are marked on the scale in the figure). Fig. (a) takes isosurface = 0.008 e/bohr3, the cut plane of Fig. (b) takes the plane of the origin (ie 0 $ \times$d)