Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11474215).
Received Date:16 July 2020
Accepted Date:06 September 2020
Available Online:22 January 2021
Published Online:05 February 2021
Abstract:In recent years, due to the shortage of fossil energy and environmental pollution, the harvesting and conversion of solar energy using semiconductors has attracted more and more attention. Among many kinds of traditional semiconductor photocatalysts, the titanium dioxide (TiO2) has become one of the most popular semiconductor photocatalysts because of its low cost, good stability and environmental friendliness. However, TiO2 has a relatively wide band gap (i.e., 3.2 eV for anatase and 3.0 eV for rutile), which can only absorb ultraviolet light with a wavelength less than 387 nm, and has a low utilization rate of sunlight. Moreover, the photo-generated electron-hole pairs in the system of TiO2 film and particle are easy to recombine, which makes the photocatalytic efficiency of the material relatively low. In order to solve these problems, TiO2 structure with porous (such as nanotube) is used to restrain the recombination of photo-generated electron-hole pairs due to its large specific surface area and good charge transfer characteristics, thereby improving its photocatalytic efficiency. In addition to changing the structure of traditional semiconductor materials, using the surface plasmon resonance effect of metal micro-nano structures to improve its photoelectric conversion efficiency has many potential applications in the fields of photovoltaic, photocatalysis and photoelectric detection. In this paper, we prepare different metallic nanoparticles loaded TiO2 nanotube composite structures by atomic layer deposition method and electron beam thermal evaporation technology and investigate the photocatalytic properties of the composite structures. It is shown that comparing with the pure TiO2 nanotubes, the photocurrent of TiO2 nanotubes loaded with Au nanoparticles increases by about 400% under 568 nm visible light irradiation; the photocurrent of TiO2 nanotubes loaded with Al nanoparticles increases by about 50% under 365 nm ultraviolet (UV) irradiation; the photocurrent of TiO2 nanotubes loaded with bimetallic Au and Al nanoparticles increases by about 50% in the whole UV-visible light region: it is significantly enhanced. Based on the fact that the surface plasmon resonance frequency of Au and Al nanoparticles are complementary, not only is the optical absorption of TiO2 nanotubes enhanced and broadened, but also the photocurrent is enhanced from ultraviolet to visible light. We believe that these results will contribute to the further development of photocurrent in semiconductor nanotubes. Keywords:nanotube/ surface plasmon/ metallic nanoparticles/ photocurrent
为了探究负载金属纳米颗粒对TiO2纳米管光电性能的影响, 在保证各入射波长的功率相同的情况下, 分别测试了纯TiO2纳米管和分别负载不同数量和尺寸的Al纳米颗粒的TiO2纳米管在紫外和可见光照射下的光电流(如图3所示). 其中, 图3(a)给出了在310—375 nm紫外光的照射下, 各样品的光电流曲线. 可以看到, 负载Al颗粒后的TiO2纳米管光电流均有不同程度的增强, 最大增强幅度达到了50%, 并且Al纳米颗粒的负载量最优值为沉积了8 nm厚度的Al薄膜, 然后退火所形成的Al纳米颗粒负载的TiO2复合纳米管结构. 图3(b)给出了样品在可见光照射下(450—800 nm)的光电流曲线. 图中曲线显示出TiO2纳米管在可见区域有较微弱的光响应, 这主要是由于TiO2纳米管在生长过程中存在缺陷和表面态, 从而引起了可见光吸收. 由于Al纳米颗粒的等离激元共振位置处于紫外区域, 所以在紫外光作用下, 复合结构的光电流有所增加. 然而, 在可见光作用下, Al颗粒的存在反而会影响TiO2纳米管对光的吸收, 因此Al/TiO2复合结构的光电流有所下降. 图 3 纯TiO2纳米管和Al-TiO2复合纳米管的电流-时间曲线 (a)入射光为紫外区域310—375 nm; (b)入射光为可见区域450—800 nm Figure3. Photocurrent of pure TiO2 nanotubes and Al/TiO2 composite nanotubes: (a) The incident light is 310–375 nm in ultraviolet (UV) region; (b) the incident light is 450–800 nm in visible region.
图4(a)是在紫外光照射下纯TiO2纳米管和Au/TiO2复合纳米管的光电流曲线. 可以看出, Au/TiO2复合纳米管的光电流相较于TiO2纳米管有不同程度的降低, 这是由于金纳米颗粒的存在影响了TiO2对紫外光的吸收. 在样品制备过程中, 金纳米颗粒是通过对金薄膜退火获得的, 因此颗粒尺寸分布不均匀, 在563 nm附近表现出宽带吸收特性. Au/TiO2纳米管在450—800 nm区域的光电流均有一定程度的增加, 最大增幅出现在568 nm处, 其光电流增大了约400%. 由此可以得出结论: Al纳米颗粒的存在增强了TiO2纳米管紫外光区域光电流, 但同时抑制了可见光区域光电流, Au纳米颗粒的存在能够增强TiO2纳米管在可见光区域的光电流, 但会抑制其在紫外光区域光电流. 由此, 我们想到在TiO2纳米管中同时沉积12 nm厚度的Au薄膜及8 nm厚的Al薄膜, 退火后得到双金属纳米颗粒负载的Au/Al/TiO2复合结构. 图 4 纯TiO2纳米管和负载不同量Au纳米颗粒TiO2纳米管的电流-时间曲线 (a)入射光为紫外区域310—375 nm; (b)入射光为可见区域450—800 nm Figure4. Photocurrent of pure TiO2 nanotubes and Au/TiO2 composite nanotubes: (a) The incident light is 310–375 nm in UV region; (b) the incident light is 450–800 nm in visible region.
在对其可见光区和紫外光区的光电流进行了测量(如图5所示)后发现, 同时负载了Au和Al双金属纳米颗粒后, 利用它们等离激元共振位置的互补的特点, 使得复合纳米管在整个紫外-可见光区域的光电流都得到明显的增强. 图 5 纯TiO2纳米管和同时负载Au和Al纳米颗粒TiO2纳米管的i-t曲线 (a)入射光为紫外区域310—375 nm; (b)入射光为可见区域450—800 nm Figure5. Photocurrent of pure TiO2 nanotubes and Au/Al/ TiO2 composite nanotubes: (a) The incident light is 310– 375 nm in UV region; (b) the incident light is 450–800 nm in visible region.