Fund Project:Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2014ZX01005-101-003) and the National Natural Science Foundation of China (Grant No. 61705268)
Received Date:09 September 2020
Accepted Date:26 September 2020
Available Online:05 February 2021
Published Online:20 February 2021
Abstract:Non-hydrogenated W-doped amorphous diamond-like carbon films with different tungsten content are prepared by pulsed laser deposition through using the W-doped graphite targets. The variation of the tungsten content in the doped diamond-like carbon films has a stable linear relation with tungsten content in the doped targets, which shows the importance of pulsed laser deposition in the field of the refractory metal doping technology. The doped tungsten has no effect on the crystal structure of the diamond-like carbon film according to X-ray diffraction test. In the W-doped diamond-like carbon film, most of the tungsten atoms form the tungsten carbides with the carbon atoms when the tungsten content is relatively low, and inlay in the network of the amorphous carbon, reducing the carbon coordination atoms and local density. In addition, the tungsten oxides formed from the tungsten atoms and oxygen atoms help to reduce the friction coefficient. Therefore, the friction coefficient of the films decreases with the tungsten content increasing, and the lowest friction coefficient is 0.091 at the doping content of 9.67 at.%. However, more and more tungsten clusters form with the tungsten content further increasing according to the results of atomic force microscope, thus increasing the surface roughness of the diamond-like carbon films and resulting dominantly in the increase of the friction coefficient. On the other hand, the increasing of tungsten content reduces the nano-hardness and Yang’s modulus of the doped diamond-like carbon film due to the reduction of the local atomic binding energy in the per unit volume. However, the best wear-resistance is shown in the W-doped diamond-like carbon film with relatively low tungsten content of 6.28 at.%, instead of the pure diamond-like carbon film with the highest hardness of 52.2 GPa. This research offers an experimental base for practical applications of the non-hydrogenated W-doped diamond-like carbon film with low friction coefficient and high hardness grown by pulsed laser deposition. An optimized W-doped diamond-like carbon film has low friction coefficient and high hardness, along with the high heat conduction and resistance, and can be used as protective tribological coatings for the micro- and nano- electron devices to improve their working stability and reduce the sizes. Keywords:pulsed laser deposition/ tungsten-doped diamond-like carbon film/ tribological property/ nano-indentation
图5显示了未镀膜Si基底、纯DLC膜和部分钨掺杂DLC膜典型的微摩擦测试曲线, 以及钨掺杂含量对摩擦系数的影响. 图 5 钨掺杂DLC膜的摩擦系数 (a) 典型的微摩擦测试曲线; (b) 掺杂含量对摩擦系数的影响 Figure5. Friction coefficient of the W-doped DLC films: (a) Typical measured curves of the mirco-tribometer; (b) influences of the doping content on the friction coefficient.