1.College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China 2.College of science, Inner Mongolia University of Science & Technology, Baotou 014010, China 3.College of Chemistry and Enviormental Science, Inner Mongolia Normal University, Hohhot 010022, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51662034), the Program of Joint Fund of the Natural Science Foundation of Inner Mongolia, China (Grant No. 2019LH05001), and the Graduate Reaserch Innovation Fund of Inner Mongolia Normal University, China (Grant No. CXJJS19113)
Received Date:07 August 2020
Accepted Date:21 September 2020
Available Online:24 January 2021
Published Online:05 February 2021
Abstract:Nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders are successfully synthesized by the simple solid-state reaction in vacuum condition for the first time. The effect of Eu doping on the crystal structure, grain morphology, microstructure and optical absorption properties of nanocrystalline NdB6 are investigated by X-ray diffraction, scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM) and optical absorption measurements. The results show that all the synthesized samples have a single-phase CsCl-type cubic structure with space group of Pm-3m. The SEM results show that the average grain size of the synthesized Nd1–xEuxB6 powders is 50 nm. The HRTEM results show that nanocrystalline Nd1–xEuxB6 has good crystallinity. The results of optical absorption show that the absorption valley of nanocrystalline Nd1–xEuxB6 is redshifted from 629 nm to higher than 1000 nm with the increase of Eu doping, indicating that the transparency of NdB6 is tunable. Additionally, the X-ray absorption near-edge structure spectra μ(E) around the Nd and Eu L3 edges for nanocrystalline NdB6 and EuB6 show that total valence of Nd ion is estimated at +3 in nanocrystalline NdB6 and total valence of Eu ion in nanocrystalline EuB6 is +2. Therefore, the Eu-doping into NdB6 effectively reduces the electron conduction number and it leads the plasma resonance frequency energy to decrease. In order to further qualitatively explain the influence of Eu doping on the optical absorption mechanism, the first principle calculations are used to calculate the band structure, density of states, dielectric function and plasma resonance frequency energy. The calculation results show that the electron band of NdB6 and EuB6 cross the Fermi energy, indicating that they are typical conductors. In addition, the plasmon resonance frequency can be described in the electron energy loss function. The plasmon resonance frequency energy of NdB6 and EuB6 are 1.98 and 1.04 eV, which are corresponding to the absorption valley of 626.26 and 1192.31 nm, respectively. This confirms that the first principle calculation results are in good consistence with the experimental optical absorption valley. Therefore, as an efficient optical absorption material, nanocrystalline Nd1–xEuxB6 powders can expand the optical application scope of rare earth hexaborides. Keywords:rare earth hexaboride/ nanocrystalline material/ optical absorption
全文HTML
--> --> --> -->
2.1.多元纳米Nd1–xEuxB6粉末制备及表征
将Eu2O3 (纯度为99.9%)、NdCl3·6H2O (纯度为99.9%)和NaBH4 (纯度为99.0%)的粉末按照稀土与硼源化学摩尔比为1∶6的比例, 在玛瑙研钵中混合研磨30 min. 将混合均匀的粉末压片后放入石英管中, 在真空度为2 × 10–2 bar (1 bar = 105 Pa), 反应温度为1150 ℃条件下烧结2 h. 为了保证烧结样品的单相性, 对反应产物依次用盐酸、去离子水和无水乙醇清洗3次. 采用X射线衍射仪(XRD-BRUKER D8 ADVANCE)进行物相鉴定(步长为0.02°, 范围为20°—80°). 采用场发射扫描电子显微镜(FESEM-Hitachi SU8010)表征烧结粉末的形貌及晶粒大小, 微观结构由透射电子显微镜(TEM-FEI-Tecnai F20 S-Twin)表征. 采用紫外-可见-近红外分光光度计(PerkinElmer, Lambda35)测量光吸收性能. 本实验采用的同步辐射光源由日本驻波高能研究所的BL-12A窗口完成. 22.2.计算方法 -->
2.2.计算方法
采用基于密度泛函理论框架的CASTEP软件包计算了无限大晶体(体材料)的能带结构及光学性质. 如图1所示, NdB6和EuB6晶体结构均为CsCl型简立方结构, 空间群为Pm-3m. 为了确保计算的精度以及速度, 对晶体模型进行了结构优化, 优化后NdB6中Nd位于(0, 0, 0)晶位, B位于(0.201, 0.5, 0.5)晶位; EuB6中Eu位于(0, 0, 0)晶位, B位于(0.204, 0.5, 0.5)晶位. 其中平面波截断能为450 eV, 体系总能量的收敛值为10–6 eV/cm–1, 晶体内应力收敛标准为0.05 GPa, 交换关联势采用广义梯度近似中的Perdew-Burke-Ernzerhof形式. 布里渊区积分采用16 × 16 × 16的Monkhorst-Pack特殊k点方法, 能带带隙收敛精度为1.0 × 10–5 eV, 能量积分在倒易空间中进行. 图 1 稀土六硼化物RB6 (R = Nd, Eu)的晶体结构, 其中左图为以硼(B)原子为中心的晶体结构, 右图为以稀土(R)原子为中心的晶体结构 Figure1. Crystal structure of RB6 (R = Nd, Eu). Left panel shows the crystal structure centered on the boron atom. Right panel shows the crystal structure centered on rare earth atom.
图 4 (a) 纳米Nd0.4Eu0.6B6的TEM照片; (b) HRTEM照片和快速傅里叶变换照片; (c) 纳米Nd0.4Eu0.6B6的HAADF照片; (d)?(f) Nd0.4Eu0.6B6中的Nd, Eu和B元素分布 Figure4. (a) TEM image of nanocrystalline Nd0.4Eu0.6B6; (b) HRTEM image and fast Fourier transform pattern; (c) HAADF image of Nd0.4Eu0.6B6; (d)?(f) elemental distribution of Nd, Eu and B for nanocrystalline Nd0.4Eu0.6B6.