Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51965047), the Inner Mongolia Natural Science Foundation, China (Grant No. 2018MS06007), and the Inner Mongolia University 2018 High-level Talent Introduction and Research Startup Project, China (Grant Nos. 21700-5185128, 21700-5185131).
Received Date:03 July 2020
Accepted Date:04 September 2020
Available Online:21 January 2021
Published Online:05 February 2021
Abstract:Terahertz metamaterial (THz MM) absorber, as an important type of MM functional device, can not only achieve perfect absorption of incident THz waves, but also act as a refractive index sensor to capture and monitor changes in the information about surrounding environment. Generally, the sensing characteristics of the THz MM absorber can be improved by optimizing the structure of the surface metal resonance unit and changing the material and shape of the dielectric layer. In order to further study the influence of the intermediate dielectric layer on the sensing characteristics of the THz MM absorber, in this paper we implement three THz MM absorbers with continuous dielectric layer, discontinuous dielectric layer and microcavity structure based on the metallic split-ring resonator array, and conduct in-depth study of their sensing characteristics and sensing mechanism. The THz MM absorber with continuous dielectric layer and metallic split-ring resonator array can be used as a refractive index sensor to realize the sensing detection of analytes coated on its surface with different refractive indexes. However, it can be seen from its corresponding refractive index frequency sensitivity and FOM value that the detection sensitivity of this sensor is limited, and its sensing performance still needs improving. The main reason is that most of the resonant electromagnetic (EM) field of the THz MM absorber is tightly bound in the intermediate dielectric layer, and only the fringe field extending to the surface of the MM absorber resonant unit array can interact with the analyte to be measured, and the intensity of this part of the field directly determines the sensitivity of the sensor. In order to further improve the refractive index frequency sensitivity of the THz MM absorber, reduce the restriction of the intermediate dielectric layer to the resonant EM field, and enhance the interaction between the resonant EM field and the analyte to be measured, a THz MM absorber with discontinuous dielectric layer is proposed and studied. Compared with the THz MM absorber with continuous dielectric layer, the THz MM absorber based on discontinuous dielectric layer can be used as a refractive index sensor to realize higher-sensitivity sensing and detection of the analyte coated on the surface. In order to further enhance the interaction between the resonant EM field and the analyte to be measured, and improve the refractive index frequency sensitivity of the THz MM absorber, a THz MM absorber with a microcavity structure is proposed. For this THz MM absorber, the analyte to be measured filled in the microcavity structure can serve as the intermediate dielectric layer of the THz MM absorber, and when the metallic split-ring resonator array is completely immersed in the analyte to be measured, the resonant EM field originally confined in the intermediate dielectric layer and the analyte to be measured completely overlap in space. Therefore, compared with the first two THz MM absorbers, THz MM absorber with a microcavity structure achieves the tightly and fully contacting the resonant EM field, thereby greatly improving its sensitivity as a sensor. The results show that in order to improve the sensing characteristics of the THz MM absorber, such as the refractive index sensitivity and the maximum detection range, in addition to using the materials with lower relatively permittivity as the intermediate dielectric layer, the morphology of the intermediate dielectric layer can be changed, thereby reducing the restraint of the intermediate dielectric layer on the resonant field and enhancing the coupling between the resonant field and the analyte to be measured. Compared with the conventional THz MM absorber with continuous dielectric layer, the MM absorber with discontinuous dielectric layer and microcavity structure have many superior sensing characteristics, and can be applied to the high-sensitivity and rapid detection of analytes to be measured, and has a broader application prospect in the future sensing field. Keywords:terahertz/ metamaterial absorber/ sensing
全文HTML
--> --> --> -->
2.1.结构设计与仿真
基于连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图如图1所示, 该超材料吸波器具有典型的“三明治”结构, 即自下向上分别由底层的连续金属层、中间的连续介质层和顶层的金属开口谐振环阵列构成. 其中, 底层的连续金属层和顶层的开口谐振环阵列的材料均采用金属铜(电导率$\sigma = 5.8 \times {\rm{1}}{{\rm{0}}^{\rm{7}}}\, {{\rm{S / m}}}$), 而中间的连续介质层采用无损的柔性聚酰亚胺(polyimide, PI) 材料(相对介电常数${\varepsilon _{\rm{r}}} = 3.5$). 图 1 基于连续介质层和金属开口谐振环阵列的太赫兹超材料吸波器的结构示意图 Figure1. Schematic diagram of THz MM absorber based on continuous dielectric layer and metallic split-ring resonator array.
为了进一步理解该太赫兹超材料吸波器的谐振机理, 数值仿真研究了谐振频率处的表面电场、表面电流及$y$ = 0截面的电场和$x$ = 0截面的磁场分布. 如图3(a)所示, 谐振频率处开口谐振环的表面电流主要集中在左右两个边缘处, 且电荷在上下两个端点处交替积累, 说明该谐振峰源于开口谐振环中的电偶极子谐振. 从图3(b)可以看出, 谐振频率处的表面电场主要分布在开口谐振环的上下两端, 而这两端正是图3(a)所示的电荷累积的地方, 因此, 图3(a)所示的表面电流分布与图3(b)所示的表面电场分布实现了良好的吻合. 图 3 (a) 谐振频率处的表面电流分布; (b) 谐振频率处的表面电场分布 Figure3. (a) Surface current distribution at the resonance frequency; (b) surface electric field distribution at the resonance frequency.
虽然, 开口谐振环阵列可对入射电磁场产生强烈谐振, 实现对谐振电磁场的局域增强, 然而, 从谐振频率处$y$ = 0截面的电场和$x$=0截面的磁场分布可以看到(如图4(a)和图4(b)所示), 对于具有连续介质层和金属开口谐振环阵列的超材料吸波器来说, 有很大一部分谐振电磁场被局限在了中间介质层的内部, 而这部分谐振场很难与涂覆于金属谐振单元阵列表面的待测分析物充分接触, 因此对由待测分析物改变而引起的周围环境介电性质的改变缺乏敏感性. 图 4 (a) 谐振频率处$y$ = 0 截面的电场分布; (b) 谐振频率处$x$ = 0 截面的磁场分布 Figure4. (a) Electric field distribution at cross section of $y$ = 0 at the resonance frequency; (b) magnetic field distribution at cross section of $x$ = 0 at the resonance frequency
22.2.传感特性与传感机理研究 -->
2.2.传感特性与传感机理研究
为研究该太赫兹超材料吸波器作为传感器对待测分析物参数的电磁响应特性, 将待测分析物涂覆于超材料吸波器的金属谐振单元阵列表面, 并对其参数变化时的吸收特性进行一系列仿真分析. 由于许多生物分子的折射率都处在1.0—2.0范围内, 因此, 在整个仿真过程中将待测生物分析物的折射率范围设定为1.0—1.8. 当涂覆于超材料吸波器表面的待测分析物的厚度固定为Ha = 0.3 μm(金属开口谐振环阵列的高度, 恰好将金属开口谐振环阵列浸没于待测分析物中)不变, 而折射率从n = 1增加到n = 1.8, 该太赫兹超材料吸波器的谐振频率发生明显红移(如图5所示). 通常, 传感器的折射率频率灵敏度定义为$S(f)={{{\rm{d}}f} \mathord{\left/ {\vphantom {{{\rm{d}}f} {{\rm{d}}n}}} \right. } {{\rm{d}}n}}$, 其中, ${\rm{d}}f = f - {f_{\rm{1}}}$表示传感器谐振频率的变化(f为超材料吸波器表面涂覆具有不同折射率的待测分析物后所对应的谐振频率, ${f_{\rm{1}}}$为待测分析物为折射率n = 1的空气时所对应的谐振频率); ${\rm{d}}n$表示待测分析物折射率的变化. 如图6所示, 当待测分析物的厚度固定为Ha = 0.3 μm时, 而折射率以0.1为间隔从n = 1增加到n = 1.8时, 该太赫兹超材料吸波器所对应的折射率频率灵敏度$S(f)$为8.6 GHz/RIU, 其中RIU (refractive index unit)代表单位折射率. 图 5 在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线 Figure5. Simulated absorption characteristic curves of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.
图 6 在分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合 Figure6. Resonance frequency shifts and linear fitting of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.
为了对工作在不同频段的传感器性能进行更加合理的比较, 通常采用FOM值对传感器特性进行描述, 当传感器的灵敏度$S$相同时, FOM值越大, 则传感器的性能越好. FOM值可定义为${\rm{FOM}} = S{\rm{/FWHM}}$, 其中$S$表示传感器的折射率频率灵敏度. 对于该太赫兹超材料吸波器来说, FOM = 0.92. 由此可见, 基于连续介质层和开口谐振环阵列的太赫兹超材料吸波器可以作为折射率传感器实现对涂覆于其表面具有不同折射率的待测分析物的传感检测, 但是从其对应的折射率频率灵敏度$S(f)$和FOM值可以看出, 该传感器的检测灵敏度有限, 其传感性能仍有待提升. 究其原因, 主要是由于该太赫兹超材料吸波器的谐振电磁场大部分被紧密束缚在中间介质层中(如图4所示), 只有延伸到超材料吸波器谐振单元阵列表面的边缘场才能与待测分析物充分接触, 发生传感现象, 而这部分场的强度直接决定了传感器的灵敏度. 为了提高该太赫兹超材料吸波器的折射率频率灵敏度, 在所有参数均保持不变的情况下, 仅改变中间介质层的材料, 则传感器的折射率频率灵敏度发生了明显改变, 如图7所示. 当中间介质层材料为相对介电常数${\varepsilon _{\rm{r}}}$ = 4.4的FR-4时, 折射率频率灵敏度$S(f)$ = 8.3 GHz/RIU, 而当中间介质层材料为相对介电常数${\varepsilon _{\rm{r}}}$ = 2.68的PDMS时, 折射率频率灵敏度$S(f)$ = 15.2 GHz/RIU, 实现了灵敏度的大幅提升. 中间介质层材料的介电常数越小(折射率越低), 则对谐振场的束缚越小, 因此有更多的谐振场扩展到了开口谐振环阵列表面, 实现了与待测分析物的充分接触, 提高了传感器的灵敏度. 图 7 介质层材料的相对介电常数变化对传感器折射率频率灵敏度的影响 Figure7. Influence of relative permittivity of dielectric layer material on the refractive index frequency sensitivity of the sensor.
以上仿真分析已经验证了所设计的基于连续介质层的太赫兹超材料吸波器对涂覆于其表面的待测分析物的折射率存在不同的电磁响应, 下面通过仿真分析深入探讨该太赫兹超材料吸波器的最大探测范围, 即可以检测的被测分析物的最大厚度. 如图8和图9所示: 当涂覆于超材料吸波器表面的待测分析物的厚度Ha从0.3 μm (金属开口谐振环阵列的高度, 恰好将金属开口环谐振阵列浸没于待测分析物中)逐渐增大到25 μm, 待测分析物与超材料吸波器表面的边缘场从部分接触逐步实现了充分的全接触, 于是太赫兹超材料吸波器的折射率频率灵敏度$S(f)$从8.6 GHz/RIU呈指数趋势增大到34.8 GHz/RIU; 然而, 超材料吸波器周围的谐振场属于近场, 超过一定的空间范围后, 远离超材料表面的谐振场将呈指数下降. 因此, 当待测分析物的厚度Ha 从25 μm继续增大到80 μm, 该太赫兹超材料吸波器的折射率频率灵敏度$S(f)$从34.8 GHz/RIU小幅增加到36.2 GHz/RIU, 并逐渐趋于饱和, 即对待测分析物的厚度已不再敏感. 图 8 在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有连续介质层的太赫兹超材料吸波器的谐振频率偏移 Figure8. Resonance frequency shifts of THz MM absorber with continuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.
图 9 选用连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响 Figure9. Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with continuous dielectric layer.
当涂覆于超材料吸波器表面的待测分析物的厚度固定为Ha = 25.3 μm (中间介质层的高度与金属开口谐振环阵列的高度之和, 恰好将金属开口谐振环阵列浸没于待测分析物中)不变, 而折射率从n = 1增加到n = 1.8, 如图12所示, 该太赫兹超材料吸波器的谐振频率发生明显红移, 对应的吸收率逐渐增大. 当分析物折射率为n = 1.8时, 与具有连续介质层的太赫兹超材料吸波器一样, 实现了对入射电磁波的“完美”吸收. 图 12 在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的吸收特性仿真曲线 Figure12. Simulated absorption characteristic curves of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.
如图13所示, 当待测分析物的厚度固定为Ha = 25.3 μm, 而折射率以0.1为间隔从n = 1增加到n = 1.8时, 该太赫兹超材料吸波器所对应的折射率频率灵敏度$S(f)\!=\! 65.8\rm ~GHz/RIU,$ FOM = 5.06, 远高于具有连续介质层的太赫兹超材料吸波器的折射率频率灵敏度$S(f)$= 8.6 GHz/RIU和FOM = 0.92. 由此可见, 所设计的基于非连续介质层与开口谐振环阵列的太赫兹超材料吸波器可以作为折射率传感器实现对涂覆于其表面的待测分析物的高灵敏度传感检测. 图 13 在分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移及其线性拟合 Figure13. Resonance frequency shifts and linear fitting of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8.
如图14和图15所示: 当涂覆于超材料吸波器表面的待测分析物的厚度Ha从12.5 μm (中间介质层高度的一半)增大到25 μm (中间介质层的高度), 继续增大到25.3 μm (中间介质层的高度与金属开口谐振环阵列的高度之和, 恰好将金属开口谐振环阵列浸没于待测分析物中), 直到50 μm时, 待测分析物与超材料吸波器的边缘场从部分接触逐步实现了紧密的全接触, 于是太赫兹超材料吸波器的折射率频率灵敏度$S(f)$从12.75 GHz/RIU呈指数趋势增大到102.4 GHz/RIU; 同样, 由于远离超材料吸波器表面的谐振场呈指数下降, 因此, 当待测分析物的厚度$H_{\rm a}$从50 μm继续增大到100 μm, 该太赫兹超材料吸波器的折射率频率灵敏度$S(f)$逐渐趋于饱和, 基本保持在$S(f)$ = 105.2 GHz/RIU不变. 对于该太赫兹超材料吸波器而言, 为获得较高的传感灵敏度, 应根据实际需要选择在其表面涂覆厚度大于中间介质层高度与金属开口谐振环阵列高度之和的待测分析物. 当待测分析物的厚度为80 μm时, 即可获得很高的传感灵敏度, 之后待测分析物的厚度继续增加, 不会再对其传感灵敏度产生明显影响. 图 14 在分析物厚度不同条件下, 分析物折射率从n = 1变化到n = 1.8时具有非连续介质层的太赫兹超材料吸波器的谐振频率偏移 Figure14. Resonance frequency shifts of THz MM absorber with discontinuous dielectric layer under analyte refractive index changes from n = 1 to n = 1.8 for different thicknesses of the analyte.
图 15 选用非连续介质层的太赫兹超材料吸波器作为传感器时, 被测分析物厚度对传感器折射率频率灵敏度的影响 Figure15. Influence of the thickness of the analyte to be measured on the refractive index frequency sensitivity of the sensor for the THz MM absorber with discontinuous dielectric layer.
为了进一步减小介质层对谐振场的束缚, 增强谐振场与被测分析物之间的相互作用, 提升太赫兹超材料吸波器的折射率频率灵敏度, 提出具有微腔结构的太赫兹超材料吸波器, 如图16所示. 该超材料吸波器自下向上分别由底层的连续金属板、中间的微腔结构、顶层的金属开口谐振环阵列和支撑层构成. 所谓的微腔结构其实就是在底层的连续金属板与顶层的支撑层之间形成的微米级别的空隙, 填充到微腔结构中的待测分析物可充当该太赫兹超材料吸波器的中间介质层. 该太赫兹超材料吸波器所采用的材料和对应的结构参数仍然与具有连续介质层的太赫兹超材料吸波器保持完全一致, 且金属谐振单元阵列的下表面与底层连续金属层之间的距离设置为Hd = 25 μm. 图 16 待测分析物充当介质层的太赫兹超材料吸波器的结构示意图 Figure16. Schematic diagram of THz MM absorber whose analyte to be measured acts as dielectric layer.
如图17所示, 当太赫兹波垂直入射时, 该太赫兹超材料吸波器在${f_{\rm{0}}}$ = 0.277 THz处产生了1个吸收率为86.6%的吸收峰, 对应的谐振峰半高宽FWHM为15 GHz, 品质因数为$Q({f_0})$ = 18.4. 与图2和图11所示的太赫兹超材料吸波器的吸收特性曲线相比, 该太赫兹超材料吸波器的谐振峰发生蓝移, 吸收率下降, 谐振峰半高宽FWHM增大, 品质因数$Q$小幅减小, 这样的差异源于仿真过程中在金属谐振单元阵列与底层连续金属层之间未填充任何物质, 因此影响了该太赫兹超材料吸波器的吸收特性. 图 17 未填充待测分析物的太赫兹超材料吸波器的吸收特性仿真曲线 Figure17. Simulated absorption characteristic curve of THz MM absorber without filling the analyte to be measured.
24.2.传感特性与传感机理研究 -->
4.2.传感特性与传感机理研究
充当中间介质层的待测分析物厚度固定为Ha = 25.3 μm (金属开口谐振环阵列的上表面与底面连续金属板之间的高度, 恰好将金属谐振环阵列浸没于待测分析物中)不变, 而折射率从n = 1增加到n = 1.8, 如图18所示, 该太赫兹超材料吸波器的谐振频率同样发生明显红移, 对应的吸收率逐渐增大. 当分析物折射率为n = 1.8时, 实现了对入射电磁波的“完美”吸收. 图 18 分析物折射率从n = 1变化到n=1.8时具有微腔结构的太赫兹超材料吸波器的吸收特性仿真曲线 Figure18. Simulated absorption characteristic curve of THz MM absorber with microcavity structure under analyte refractive index range from n = 1 to n = 1.8.
如图19所示, 当待测分析物的厚度固定为Ha = 25.3 μm, 而折射率以0.1为间隔从n = 1增加到n = 1.8时, 该太赫兹超材料吸波器所对应的折射率频率灵敏度$S(f)$ = 101.5 GHz/RIU, FOM = 6.77, 远高于具有连续介质层和非连续介质层的太赫兹超材料吸波器的折射率频率灵敏度. 对于该太赫兹超材料吸波器来说, 待测分析物充当了中间介质层, 当待测分析物的厚度为Ha = 25.3 μm时, 金属开口谐振环阵列完全浸没于待测分析物中, 原本局限于中间介质层中的谐振电磁场与待测分析物实现了空间上的完全重叠, 因此, 与前两种太赫兹超材料吸波器相比, 待测分析物作为中间介质层实现了与谐振电磁场的最紧密的全接触, 进而大幅提升了其作为传感器的灵敏度. 图 19 分析物折射率从n = 1变化到n = 1.8时具有微腔结构的太赫兹超材料吸波器的谐振频率偏移及其线性拟合 Figure19. Resonance frequency shifts and linear fitting of THz MM absorber with microcavity structure under analyte refractive index changes from n = 1 to n = 1.8.