Fund Project:Project supported by the Foundation of National Key Laboratory on Electromagnetic Environment Effects, China (Grant No. 614220504030617)
Received Date:02 June 2020
Accepted Date:18 August 2020
Available Online:04 December 2020
Published Online:20 December 2020
Abstract:In this paper, the voltage induced metal-insulator phase transition (MIT) of polyethene glycol (PEG) composite film is investigated based on VO2 nanoparticles prepared by the hydrothermal method and vacuum annealing process. High purity VO2 (B) nanoparticles are obtained after being treated in a hydrothermal reactor at 180 ℃ for 12 h by using vanadium pentoxide (V2O5) and oxalic acid (H2C2O4·2H2O) as raw materials. The X-ray diffraction (XRD) pattern shows that the prepared nano-powders are free of impurities, and the scanning electron microscope (SEM) pictures confirm that the micro-morphology is of a band-shaped nano-structure. Next, these products are heated in a vacuum quartz tube at 500 ℃ for different times. The XRD and differential scanning calorimeter (DSC) curves of the annealed samples prove that the VO2 (M) with MIT performance is successfully prepared. And the content of M phase in the sample increases with preparation time increasing. When the annealing time is longer than 60 min, all the samples are converted into materials with M phase. The SEM images show that the average length of the nano-powders decreases with the annealing time increasing from 10 min to 300 min. Then PEG coating containing VO2 (M) nanoparticles is applied between two electrodes with a pitch of 1 mm on printed circuit board (PCB). The V-I test is carried out after a 20 kΩ resistor has been connected in the circuit. The results display repeatable non-linear V-I curves indicating that the composite film undergoes an MIT phase transition under voltage. After it is activated for the first test, the MIT voltage and non-linear coefficient increase exponentially as the length of VO2 decreases. Besides, it is also found that the voltage across the material is maintained at around 10 V after the resistance has changed suddenly, which is similar to the behavior of diode clamping voltage. We believe that the phase transition voltage and non-linear coefficient of the VO2 composite film are influenced by the intra-particle potential barrier and the inter-layer potential barrier. The longer the average length of the nanoparticles, the higher the potential barrier between the interfaces in the conductive channels is, and thus increasing the phase transition voltage and phase transition coefficient. The activation phenomenon of the thin film is caused by reducing the barrier between particles during the first test. Furthermore, the results can prove that the electric field is the determinant of the phase transition during the VO2 composite film electrical field induced MIT of the VO2 composite film. However, after the phase transition, Joule heat plays a significant role in maintaining the low resistance state. Keywords:vanadium dioxide/ vacuum annealing/ electrical field induced phase transition/ potential barrier
表1不同退火时间薄膜的电压响应数据表 Table1.Voltage response data table of films with different annealing times.
图 6 不同退火时间样品的SEM图 (a)退火时间为5 min; (b)退火时间为20 min; (c)退火时间为30 min; (d)退火时间为60 min; (e)退火时间为90 min; (f)退火时间为300 min Figure6. SEM images of samples with different annealing times: (a) Annealing time is 5 min; (b) annealing time is 20 min; (c) annealing time is 30 min; (d) annealing time is 60 min; (e) annealing time is 90 min; (f) annealing time is 300 min
为确定制备粉末样品的相变性能, 对样品进行了DSC测试, 在程序控制温度下, 测量样品和参比物的功率差(热流率)与温度关系, 通过对吸热峰和放热峰的分析得到样品的相变温度等信息. 由图7可以看出, 升温过程中, 所有样品均有吸热峰出现, 退火时间增加, 吸热峰面积增大, 焓变能增加, 由上文的分析可知, 这是因为随着退火时间的增加, 样品中M相含量增加, 但所有样品的相变温度均在67.5 ℃附近, 非常接近块状VO2的相变温度(68 ℃), 这说明样品的相变温度与退火时间没有关系, 降温DSC曲线表明, 所有样品均有相变发生, 随着退火时间的增加相变温度由61 ℃向62 ℃变化, 变化不明显, 与升温相变温度相比, 材料的相变迟滞宽度为6 ℃左右. 通过上述分析结果可以说明, 我们成功制备了典型的具有可逆相变性能的VO2 (M)纳米颗粒. 图 7 不同退火时间制备样品的DSC测试曲线(下半部分为升温曲线, 上半部分为降温曲线) Figure7. DSC curves of samples prepared at different annealing times (The lower is the heating curves, and the upper is the cooling curves)
23.2.复合薄膜电致相变特性 -->
3.2.复合薄膜电致相变特性
为研究纳米颗粒的电致相变性能, 将制备的VO2粉末与聚乙二醇(PEG)水溶液混合, 制备成VO2-PEG涂料, 涂于测试电极之间, 涂层SEM图如图8上插图所示. 根据涂层的SEM图可看出, 制备的涂层中VO2纳米颗粒相互接触, 纳米颗粒由超薄的PEG修饰. 根据文献[27], 可知制备的VO2涂料已经超过了VO2的逾渗阈值, 此时填料性能可明显影响涂层电性能. 图 8 VO2-PEG复合薄膜V-I曲线(下插图为测试连接示意图(两电极之间间距为1 mm, 电极宽度为2 mm), 上插图为薄膜SEM图) Figure8.V-I curves of VO2-PEG composite film. The inset at the bottom is the schematic diagram of the test connection (The distance between the two electrodes is 1 mm, and the electrode width is 2 mm), and the inset at the top is the SEM image of the film.
首先对样品进行了变温电阻测试(如图9所示), 可以看出, 所有样品在温度变化下, 电阻均可发生突变, 升温相变温度在68 ℃附近, 其中样品6#电阻变化率最大, 将近3个数量级, 虽然没有报道的纯VO2电阻变化率大, 但已证明了制备的VO2复合薄膜能够发生可逆的温度相变, 且随着退火时间的增加, 制备样品的电阻变化率增加. 图 9 (a)?(f)样品1#?6#的变温电阻曲线(红色为升温曲线, 蓝色为降温曲线) Figure9. Temperature-dependent resistance curves of (a)?(f) samples 1#?6# (The red lines are the heating curves; the blue lines are the cooling curves).
典型V-I测试曲线如图8所示, 可以看出, 重复测试中制备样品均出现了电流突变现象. 其中第1次测试的材料相变电压较高(约79 V), 之后相变电压约为40 V, 重复性较好. 作为防护器件、可调电阻涂层的潜在应用材料, 在实际应用过程中, VO2复合材料的相变电压VM、钳位电压VL、相变前后的电阻($ {R}_{0}^{1} $和$ {R}_{0}^{2} $)及非线性系数β等性能参数对产品应用具有非常关键的影响. 图10为一典型样品的测试数据分析图, 其中图10(a)是直接测量得到的V-I曲线, 图10(b)—(d)是根据图10(a)中的数据计算得到, 如图10(b)中材料电阻R0 = Vi/I – 2000 (其中Vi为图10(a)中的测试电压, I为测试得到的电路中的电流, 2000即电路中保护电阻值), 图10(c)中的材料两端电压V0 = Vi – I × 2000. 图 10 复合薄膜典型测试曲线分析图 (a)输入电压Vi与电流I曲线; (b)输入电压Vi与材料电阻R0曲线; (c)材料两端电压V0与电流I曲线; (d)输入电压Vi与材料两端电压V0曲线 Figure10. Analysis of the second test curve of the composite film: (a) Input voltage Vi vs. current I; (b) input voltage Vi vs. material resistance R0 curve; (c) voltage across the material V0 vs. current I curve; (d) input voltage Vi vs. voltage across the material V0 curve
图 12 相变电压(a)及非线性系数(b)随纳米颗粒长度的变化曲线(红色为拟合曲线) Figure12. MIT voltage (a) and nonlinear coefficient (b) with the nanoparticle length change curves (The red lines are the fitting curves).
23.3.复合薄膜电致相变建模与分析 -->
3.3.复合薄膜电致相变建模与分析
关于VO2相变机理有多种模型与理论[29], 其中Mott[30]或Peierls[31]理论均得到了不同研究者的支持, 而对于VO2电致相变的研究则相对较少, 文献[32]专门讨论了目前为止国内外在VO2电致相变实验和理论方面的研究成果, 总体来说, 有3种理论较为流行: 第1种是VO2在纯电场作用下即可发生相变[33,34]; 第2种是直接导致VO2发生相变的因素是电流引起的焦耳热作用[35,36]; 第3种观点认为在电压作用下, VO2发生相变, 但材料发生相变后依赖大电流引进的焦耳热来维持VO2晶体的R相[37]. 而对于VO2复合薄膜的相变理论研究, 集中在热致变色[38]领域, 研究结果认为在无掺杂VO2复合薄膜中, 填料尺寸对复合薄膜的相变温度具有很大影响[19], 甚至有****通过改变纳米颗粒尺寸将相变温度降到了室温附近[39], 但对VO2复合薄膜的电致相变研究较少. 通过第3节的实验结果分析可以看出, 纳米VO2的长度同样对复合薄膜的电致相变有重要影响. 根据复合薄膜丝状传导机制[40]和等电位模型, 将VO2复合薄膜中载流子运动简化为如图13所示模型. 图 13 VO2复合薄膜中导电通道模型(a)和电路简化模型(b) Figure13. The conductive channel model (a) and the simplified circuit model (b) in the VO2 composite film.