1.School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China 2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 3.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115) and the National Science Fund for Talent Training in Basic Science of the National Natural Science Foundation of China (Grant No. J1103210)
Received Date:02 July 2020
Accepted Date:09 September 2020
Available Online:08 December 2020
Published Online:05 December 2020
Abstract:An asymmetric graphene-coated elliptical dielectric nano-parallel wires’ waveguide is proposed. By using the multipole method, in the two elliptic cylindrical coordinate systems, firstly, the longitudinal component of the electric field and the magnetic field are expressed by Mathieu functions, then the corresponding angular and radial components are obtained by Maxwell’s equations. The graphene is regarded as a zero-thickness interface with surface conductivity, and the boundary conditions are applied to these interfaces by the point-matching method. A linear algebraic equation system is obtained finally. The effective refractive indices and the field distributions of modes can be obtained by numerically solving the equation. The six lowest order modes supported by the proposed structure are classified, and the dependence of the characteristics of these modes, separately, on the working wavelength, the graphene Fermi energy and waveguide structure parameters are studied. The real part of the effective refractive index, the propagating length, and the quality factor are used to judge the performance of the waveguide. The results reveal that the characteristics of these modes can be greatly changed by altering the working wavelength of the waveguide, the Fermi energy of graphene, and the spacing between nanowires. When the length of the semi-major and the semi-minor axes of the nanowires are modified, the real part of the effective refractive index, the propagating length, and the quality factor can only be changed finely. At the same time, the results obtained by the multipole method are completely consistent with the results from the finite element method. By comparing the performances among the fundamental mode supported by the single graphene-coated elliptical dielectric nanowire, the symmetric graphene-coated elliptical dielectric nano-parallel wires, and the asymmetric graphene-coated elliptical dielectric nano-parallel wires by the means of the FEM based on commercial software (COMSOL), we find that the performances of the proposed waveguide in this paper are superior to those of the other two waveguides. This work can provide a theoretical basis for the design, fabrication, and application of asymmetric graphene-coated elliptical dielectric nano-parallel wires’ waveguide. The proposed structure is expected to be used in the mode conversion and coupling in the future devices. Keywords:graphene/ nanowires/ waveguides/ multipole method
令结构参数${a_1} \!=\! 90\;{\rm{nm}}$, ${b_1} \!=\! 70\;{\rm{nm}}$, ${a_2} \!=\! 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, 当${E_{\rm{f}}} = 0.5\;{\rm{eV}}$时, 有效折射率实部${\rm{Re}} ({n_{{\rm{eff}}}})$、传播长度${L_{{\rm{prop}}}}$及品质因数FOM在$\lambda = 7\;\;\text{μm}$处随两纳米线间距d的变化关系如图5(a),(b),(c)所示. 逐渐增加两根纳米线之间的距离, Mode 0和Mode 2的有效折射率实部下降, Mode 3的有效折射率实部略有增加, Mode 1, Mode 4的有效折射率实部并无明显变化; 当两纳米线间距由$15\;{\rm{nm}}$增至$35\;{\rm{nm}}$时, Mode 0的传播长度达到最长, 继续增大两纳米线之间的距离, Mode 0的传播长度减小; 随着两纳米线间距不断增大, Mode 2的传播长度变小, Mode 5的传播长度增加, 其他模式传播长度无明显改变. 结果表明, 增大两纳米线间距, Mode 0, Mode 2的传输性能下降, Mode 5的传输性能得以改善; 其余几个模式对纳米线间距这一参数变化并不敏感. 图 5 当$\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${a_1} = 90\;{\rm{nm}}$, ${b_1} = 70\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$ (a)有效折射率${\rm{Re}} ({n_{{\rm{eff}}}})$, (b)传播长度${L_{{\rm{prop}}}}$, (c)品质因数FOM随两纳米线间距d变化关系图; (d)$d = 15\;{\rm{nm}}$, (e) $d = 35 \;{\rm{nm}}$, (f) $d = 55 \;{\rm{nm}}$时基模的电场强度变化图 Figure5. The dependence of (a) the effective refractive index ${\rm{Re}} ({n_{{\rm{eff}}}})$, (b) the propagation length ${L_{{\rm{prop}}}}$, (c) the quality factor FOM for the six lowest order modes on the distance d between two nanowires at $\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${a_1} = 90\;{\rm{nm}}$, ${b_1} = 70\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$; the electric field distribution $\left| E \right|$ for (d) $d = 15\;{\rm{nm}}$, (e) $d = 35 \;{\rm{nm}}$, (f) $d = 55 \;{\rm{nm}}$.
以基模为例, 分析调节两纳米线距离时电场分布变化: 当$d = 15\;{\rm{nm}}$时, 电场在两纳米线靠近部分呈现反对称分布, 电场强度最大, 耦合作用较强, 传播损耗较大, 传播长度最小; 进一步增加纳米线间距至$35\;{\rm{nm}}$时, 电场强度变弱, 两纳米线之间的耦合作用减弱, 此时损耗变小, 传播长度增加; 当$d = 55 \;{\rm{nm}}$时, 两纳米线之间的耦合作用最弱, 波导整体损耗增加, 传播长度下降, 两根纳米线上的场分布趋向于单根纳米线单独存在时的场分布; 可以推断, 若两纳米线之间的距离增大至某一特定数值, 两纳米线之间的耦合作用将完全消失, 此时, 两根纳米线上的场分布将呈现单根纳米线单独存在时的特点. 在$\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$时, 保持结构参数${b_1} = 70\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 30\;{\rm{nm}}$不变, 有效折射率实部${\rm{Re}} ({n_{{\rm{eff}}}})$、传播长度${L_{{\rm{prop}}}}$及品质因数FOM随${a_1}$的变化关系如图6(a),(b),(c)所示. 当1号纳米线的半长轴由$73\;{\rm{nm}}$增加至$97\;{\rm{nm}}$时, Mode 0有效折射率实部略有下降, Mode 1和Mode 4有效折射率实部基本保持不变, Mode 2和Mode 3有效折射率实部缓慢上升; 随着${a_1}$的逐渐增加, Mode 0, Mode 2, Mode 4的传播长度基本保持不变, Mode 3的传播长度缓慢增加, Mode 1的传播长度略有减小; 在所选参数变换范围内, Mode 0的品质因数最高, 性能最佳, 其余模式的FOM按照Mode 2, Mode 3, Mode 1, Mode 4的顺序降低. 图 6 当$\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${b_1} = 70\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 30\;{\rm{nm}}$时, (a)有效折射率实部${\rm{Re}} ({n_{{\rm{eff}}}})$、(b)传播长度${L_{{\rm{prop}}}}$和(c)品质因数FOM随1号纳米线半长轴${a_1}$变化关系图 Figure6. When $\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${b_1} = 70\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 30\;{\rm{nm}}$, the dependence of (a) the effective refractive index ${\rm{Re}} ({n_{{\rm{eff}}}})$, (b) the propagation length ${L_{{\rm{prop}}}}$, and (c) the quality factor FOM for the six lowest order modes on the length of ${a_1}$ on the No.1 nanowire.
在$\lambda = 7\; \text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$时, 保持结构参数${a_1} \!=\! 90\;{\rm{nm}}$, ${a_2} \!=\! 80\;{\rm{nm}}$, ${b_2} \!=\! 60\;{\rm{nm}}$, $d \!=\! 35\;{\rm{nm}}$, 改变1号纳米线的半短轴长度${b_1}$, 有效折射率实部${\rm{Re}} ({n_{{\rm{eff}}}})$、传播长度${L_{{\rm{prop}}}}$及品质因数FOM随${b_1}$的变化关系如图7(a),(b),(c)所示. 逐渐将1号纳米线半短轴长由${\rm{61 nm}}$增加至$85\;{\rm{nm}}$, Mode 0, Mode 1, Mode 5的有效折射率实部明显增加, Mode 2的有效折射率实部略有下降, Mode 3和Mode 4的有效折射率实部无明显变化; 同时, Mode 0的传播长度基本不变, Mode 2, Mode 3, Mode 4的传播长度略有下降, Mode 1和Mode 5的传播长度缓慢增加; 在参数所选变化范围内, Mode 0的传输性能最好. 图 7 当$\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${a_1} = 90\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 35\;{\rm{nm}}$时, (a)有效折射率实部${\rm{Re}} ({n_{{\rm{eff}}}})$、(b)传播长度${L_{{\rm{prop}}}}$和(c)品质因数FOM随1号纳米线半短轴b1变化关系图 Figure7. When $\lambda = 7\;\text{μm}$, ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, ${a_1} = 90\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 35\;{\rm{nm}}$, the dependence of (a) the effective refractive index ${\rm{Re}} ({n_{{\rm{eff}}}})$, (b) the propagation length ${L_{{\rm{prop}}}}$ and (c) the quality factor FOM for the six lowest order modes on the length of ${b_1}$ on the No.1 nanowire.
23.3.与其他两种波导的比较分析 -->
3.3.与其他两种波导的比较分析
为了说明涂覆石墨烯的非对称椭圆电介质纳米并行线(结构1)的传输性能的优越性, 以基模为例, 在两种条件下, 与涂覆石墨烯的单根椭圆电介质纳米线(结构2)和涂覆石墨烯的对称椭圆电介质并行纳米线(结构3)的传输性能进行了对比. 设置波导的费米能为${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, 假设结构1的参数为${a_1} = 90\;{\rm{nm}}$, ${b_1} = 85\;{\rm{nm}}$, ${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$, $d = 40\;{\rm{nm}}$; 结构2的结构参数为${a_2} = 80\;{\rm{nm}}$, ${b_2} = 60\;{\rm{nm}}$; 结构3的参数为${a_1} = {a_2} = 80\;{\rm{nm}}$, ${b_1} = {b_2} = 60\;{\rm{nm}}$, $d = 40\;{\rm{nm}}$. 改变工作波长, 三种结构的有效折射率实部、传播长度及品质因数如图8(a),(b),(c)所示, 当工作波长由$5.0\;\text{μm}$增加至$6.8\;\text{μm}$时, 三种波导所支持的基模的有效折射率实部均减小, 传播长度及FOM增大. 可以看出, 本文所讨论的结构1的传输性能优于其他两种波导结构. 图 8 当${E_{\rm{f}}} = 0.5\;{\rm{eV}}$时, 三种波导结构所支持的基模的 (a)有效折射率${\rm{Re}} ({n_{{\rm{eff}}}})$、(b)传播长度和${L_{{\rm{prop}}}}$和(c)品质因数FOM随波长$\lambda $变化的关系图 Figure8. When ${E_{\rm{f}}} = 0.5\;{\rm{eV}}$, the dependence of (a) the effective refractive index ${\rm{Re}} ({n_{{\rm{eff}}}})$, (b) the propagation length ${L_{{\rm{prop}}}}$ and (c) the quality factor FOM of the fundamental mode supported by the three structures on the wavelength $\lambda $.
在上述结构参数下, 设置石墨烯的工作波长$\lambda = 7\;\text{μm}$, 改变石墨烯的费米能, 三种结构所支持的基模的有效折射率实部, 传播长度及品质因数变化如图9(a),(b),(c)所示. 可以看出, 当石墨烯的费米能级由$0.39\;{\rm{eV}}$增加至$0.53\;{\rm{eV}}$时, 三种波导所支持的基模的有效折射率实部都呈现下降趋势, 传播长度及FOM都逐渐增大. 可以看出, 本文所讨论的结构1的传输性能优于其他两种波导结构. 图 9 当$\lambda = 7\;{\rm{\mu m}}$时, 三种波导结构所支持的基模的 (a)有效折射率${\rm{Re}} ({n_{{\rm{eff}}}})$、(b)传播长度${L_{{\rm{prop}}}}$和(c)品质因数FOM随石墨烯的费米能级变化的关系图 Figure9. When $\lambda = 7\;{\rm{\mu m}}$, the dependence of (a) the effective refractive index ${\rm{Re}} ({n_{{\rm{eff}}}})$, (b) the propagation length ${L_{{\rm{prop}}}}$ and (c) the quality factor FOM of the fundamental mode supported by the three structures on the Fermi levels.