1.School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China 2.School of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract:Field enhancement is an interesting and important topic in electromagnetic study. Electromagnetic field concentration and enhancement devices have wide applications in high directional antenna design, laser ignition, optical control, etc. At present, there are usually two ways of implementing the field enhancement, one is to use the artificial electromagnetic materials to realize the radiation direction control and energy concentration, which is more suitable for the applications at microwave or lower frequencies, and the other is to use the materials with high permittivity or high permeability. However, the latter is extremely sensitive to the position and characteristic of the radiation source and the cross-sectional area of the material, and depends heavily on the value of the relative permittivity or the relative permeability of the material. Therefore, both methods cannot fully meet the application requirements of creating high field intensity in optical band, such as laser ignition, etc. In this paper, based on the theory of photonic crystal doping, the strong electromagnetic field enhancement has been successfully realized by epsilon-near-zero medium filled with ordinary dielectric dopant. We first make the comprehensive theoretical analysis of the field enhancement in the structure of epsilon-near-zero medium with dielectric dopant. The method of calculating the central magnetic field in the doped medium is then rigorously derived, and the formula for the ratio of the central magnetic field in the doped medium to the external radiation field is deduced. We find that the optimal magnetic field enhancement occurs only when the proposed structure is equivalent to an epsilon-mu-near-zero medium. Subsequently, under the above condition, various parameters (radius of the cylindrical dopant, number of sources, etc.) are studied to analyze the magnetic field enhancement performance inside the doped medium. The theoretical analysis and simulation results show that the proposed structure can significantly enhance the magnetic field which is applicable in a broad frequency band from microwave to optical region, and meets the application requirements of providing high field intensity. Finally, as a practical realization example, an ultraviolet ignition device working at 270 nm is designed, which presents an efficient and alternative way of developing electromagnetic (optical) devices for producing strong field enhancement. Keywords:epsilon-near-zero medium/ dielectric dopant/ field enhancement
2.介质掺杂ENZ媒质结构内的场分析为简化分析, 这里仅考虑二维(2D)的情况, 如图1所示. 图1(a)给出了一个截面积为S, 截面形状任意的2D ENZ介质, 该介质具有任意的相对磁导率μr0. 一个相对介电常数为εrd, 相对磁导率为μrd, 截面积为Sd的介质圆柱沿y轴嵌入该ENZ媒质中, 位置任意. 掺杂后ENZ媒质的横截面积可以表示为${S_0} = S - {S_{\rm{d}}}$. 假设该ENZ媒质中有一个交变的磁流源IM, 受IM的激励, ENZ媒质中分别存在磁场H1和电场E1, 其中磁场H1沿着y轴方向, 且在ENZ媒质中均匀分布, 电场E1则位于xoz面内. 同时在嵌入的介质柱内, 也会激励起电场和磁场, 分别设为Hd和Ed. 另外, 设ENZ媒质边缘的切向电场为Et. 图 1 ENZ介质掺杂介质结构等效示意图(2D截面) (a) ENZ媒质掺杂介质结构截面图, 存在一个与截面垂直的磁流IM; (b) 具备相同截面大小的等效ENZ介质示意图, 在该截面相同的位置存在一个与图(a)相同的的磁流IM Figure1. Schematics of magnetic ENZ medium filled with dielectric dopants: (a) A 2D magnetic ENZ medium with several macroscopic non-magnetic dielectric dopants and an alternating magnetic current IM embedded in the ENZ medium whose magnetic field H1 is polarized along y axis; (b) the equivalent homogeneous 2D ENZ medium with the same cross-sectional shape and near-zero permittivity, but a uniform equivalent relative permeability μeff
在无耗情况下, 作为分析实例, 设ENZ媒质的横截面积为2.5$ \lambda_0^2 $ (λ0为电磁波在自由空间中的波长, 横截面积可以任意选择). 理论分析中, ENZ媒质的磁导率可以任意取值, 考虑光学波段ENZ媒质一般为非磁性, 故设定ENZ媒质相对磁导率μr = 1. 在该ENZ媒质嵌入一半径为rd的非磁性介质圆柱, 其相对介电常数εr1 = 6. 通过(3)式计算可得到ENZ媒质在介质掺杂后其等效磁导率μeff随其半径变化的曲线(图2). 可见随掺杂介质半径变化, 整个结构的等效磁导率曲线呈现明显的周期性谐振. 在每个谐振峰附近, 都存在一个μeff接近零的点. 图 2 ENZ媒质介质掺杂后其等效磁导率μeff随掺杂介质半径的变化 Figure2. Effective relative permeability (μeff) of the doped ENZ medium as a function of the doping rod radius.
考虑在ENZ媒质掺杂结构中的任意位置放置一个理想二维点源(磁流源, 产生y轴方向磁场), 在该结构等效为EMNZ媒质的前提下, 研究掺杂介质圆柱半径与该圆柱中心磁场增强倍数的关系. 根据图2可知, 随着掺杂介质圆柱半径的增加, 会出现一系列的谐振峰, 自然也会出现一系列的μeff为零的点. 根据(3)式计算出当rd/λ0 = 0.158, 0.363和0.572时, 该结构均可等效为EMNZ媒质(μeff ≈ 0), 由(4)式分别计算这三种情况下的掺杂介质内部磁场和ENZ中磁场(即激励源场)的比值ψd(r), 如图3(a)所示, 图3(a)中横坐标中的“0”点表示单个掺杂介质截面的圆心, 纵坐标定义为磁场强度增强系数F. 图 3 掺杂介质具有不同半径时, 其内部中心磁场相对外辐射场的磁场增强倍数计算与仿真验证 (a) 掺杂介质内部中心磁场与其半径的关系曲线; (b) 理想点源的磁场仿真结果; (c), (d), (e) 掺杂介质半径分别为rd/λ0 = 0.158, rd/λ0 = 0.363和rd/λ0 = 0.572时掺杂介质ENZ媒质结构的磁场仿真结果 Figure3. Enhancement factors of internal magnetic field in the dopant compared with external radiation field with the different radius of dopant: (a) Enhancement factors of internal magnetic field in the dopant with different rd; (b) the simulation result of magnetic field of point source in free space; (c), (d), (e) simulation results of magnetic field in ENZ filled with dopant with different radius of dopant (rd/λ0 = 0.15659, 0.35958, 0.56427), respectively.
在实际的激光点火应用中, 若需场强要求很高, 可采用多个点火激励源, 同时提供能量叠加到同一个点火区域, 此时采用掺杂介质的ENZ媒质结构也是十分适合的. 因为ENZ媒质内部磁场均匀, 相位相同, 当几个点源置于ENZ媒质中, 其辐射场强在ENZ媒质内具有相位相同, 并能在掺杂介质中心形成完美的干涉增强效果, 使辐射能量可以完美叠加于掺杂介质的截面中心. 据此, 本节对包含多个相同辐射源的介质掺杂ENZ结构的磁场增强效应进行分析. 仍采用图3(c)的结构参数, 但在ENZ媒质中任意位置设置了两个相同的激励点源. 作为比较, 图4(a)(即图3(c))显示ENZ内为单点源时, 嵌入介质柱截面中心点的磁场幅值为7300 A/m, 场增强系数为73; 若再增加一个相同的辐射点源, 该结构介质柱截面中心点的磁场幅值增加到14000 A/m, 如图4(b)所示; 而改变两个辐射点源的嵌入位置, 结果与图4(b)相同, 如图4(c)所示; 同样保持ENZ横截面积不变, 将截面形状变为正方形, 仍得到相同的磁场分布, 如图4(d)所示. 因此, 介质掺杂ENZ媒质结构在多个源激励下, 具有良好的场强叠加增强能力, 且与源的位置及ENZ媒质截面形状无关, 这为大功率、大场强的点火装置的设计和实现提供良好的思路和途径. 图 4 掺杂介质的ENZ媒质结构分别包含单个点源和两个点源时的磁场对比仿真 (a) 掺杂介质的ENZ媒质结构包含单个点源的磁场仿真结果(εr1 = 6, rd/λ0 = 0.158); (b) 在图4(a)结构中再增加一个点源的磁场仿真结果; (c) 调整4(b)结构两个点源位置的磁场仿真结果; (d) 改变图4(c) ENZ媒质截面形状后的磁场仿真结果(点源位置任意调整, ENZ截面积不变) Figure4. Simulation results of magnetic field in ENZ medium filled with the dopant containing different point sources, respectively: (a) One point source embedded in the ENZ medium (εr1 = 6, rd/λ0 = 0.158); (b) two point sources embedded in the ENZ medium; (c) two point sources located somewhere in ENZ medium; (d) two point sources embedded in an ENZ square (with the same cross section).
4.紫外光点火器件设计实际应用中, 在波长265—275 nm的紫外波段, 金属银的相对介电常数接近零, 变化范围为–0.75—0.75 (如图5(a)的红色曲线), 呈现ENZ媒质的特性[32]. 本节根据前述的理论, 基于金属银薄膜, 设计了一种在265—275 nm波段的光学点火装置. 该装置中, 考虑银薄膜的截面积仍为2.5λ02 (这里λ0取该波段中心波长270 nm), 在银薄膜中掺杂一个横截面为圆形的非磁性介质纳米线(其相对介电常数εrd = 3), 根据(3)式的计算可知, 若介质纳米线半径为rd/λ0 = 0.226 = 61.0 nm时, 该掺杂介质银膜结构的等效磁导率μeff在265—275 nm波段内均接近零(见图5(a)蓝色曲线), 可等效为EMNZ媒质. 利用(4)式计算该结构中掺杂介质中心在中心频率点(波长为270 nm)的场增强倍数, 约为35.2, 场增强效果显著. 在270 nm波长的全波仿真分析结果如图5(b). 设入射光波磁场值为100 A/m. 当光波通过嵌入纳米线的银膜结构时, 掺杂介质中心的场强明显增强, 可达3500 A/m, 场增强系数达35, 与理论计算结果符合, 可见该结构可有效地应用于光学点火装置的设计和实现. 图 5 265—275 nm紫外光波段点火器件的计算分析与仿真验证 (a) 265—275 nm波段银的相对介电常数以及掺杂介质的银薄膜的等效磁导率计算曲线; (b) 270 nm波长掺杂介质的银薄膜的磁场分布仿真结果 Figure5. Analysis and simulation of ignition device at wavelength of 270 nm: (a) The relative permittivity of silver film (red line) and the effective relative permeability of silver film filled with dielectric dopant at wavelength of 263 nm to 275 nm (blue line); (b) the simulation result of magnetic field in silver film filled with dielectric dopant at wavelength of 270 nm (rd/λ0 = 0.2261, εrd = 3).