1.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China 2.College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:Owing to their excellent performances, Te-based thermoelectric materials have been extensively concerned. However little attention has been paid to the bonding interfaces with electrodes, which play an important role in their practical applications. Excessive element mutual diffusion occurs across the bonding interfaces when Te is connected with metallic electrode, such as copper, aluminum, iron, etc, which will impair its transport performance and life especially when they serve in the higher temperature environments. Seeking proper barriers is the key to solving the interface problem. In this work, a gradient bonding structure of Te/FeTe/Fe is prepared in one step by the spark plasma sintering (SPS) method, in which a metallic layer of FeTe, referred to as β(FeTe) phase, is introduced as barrier. The interface microstructure, element distribution, and new phases are analyzed, and the joint properties including contact resistance and shearing strength after being aged are evaluated. The results show that the introduction of β(FeTe) phase can promote the boding of Fe/β(FeTe)/Te and thus inhibiting the excessive element diffusion across the interfaces, which is due to the formation of ε(FeTe2) phase between β(FeTe) phase and Te. The contact resistance of Fe/β(FeTe) and β(FeTe)/Te are 4.1 μΩ·cm2 and 7.54 μΩ·cm2, respectively, and the shearing strength are 16.11 MPa and 15.63 MPa, respectively. The annealing temperature has significant effect on the performance of the gradient bonding structure. It has been indicated that the whole joint still owns good performance after being annealed at 553 K for 15 days, while it decreases sharply when the temperature is increased to 573 K. Hence, the optimal service temperature of Te/β(FeTe)/Fe should not be higher than 553 K. The gradient bonding structure is successfully achieved, thus attaining the purposes of inhibiting interface elements from excessively diffuse, reducing interface residual stress, and improving interface working stability and service life. So the design ideas and research results in this work have great reference significance for the study on semiconductor devices. Keywords:Te/ thermoelectric material/ gradient bonding structure/ thermal stability
全文HTML
--> --> --> -->
3.1.Te/Fe热电接头的性能
对实验前期制备的Te/Fe连接界面接触电阻进行测试, 但是发现测试结果有较大的跳动幅度, 进一步对热电接头连接界面处的组织结构、元素分布以及相组成进行观察分析, 结果如图2所示. 从图2(b)和图2(c)中可以发现扩散连接过程中Te和Fe元素交互扩散严重, 并且图2(a)显示在Fe周围分布有扩散反应后产生的浅灰色新相, 如点a1所示, 对其进行EDS点扫, 得到的其成分图谱如图2(d)所示, 元素成分比例与FeTe2相近. 界面处局部有宏观裂纹存在, 经查阅资料[19]得知二者的热膨胀系数(CTE)相差较大(CTETe = 20 × 10–6/K, CTEFe = 11.8 × 10–6/K), 所以可以判断这是烧结冷却过程中产生的局部残余应力导致的应力性开裂[20]. 以上结果表明, 无论是界面微观组织结构的质量, 还是元素分布的合理性, Te/Fe热电接头均体现较差的界面质量. 图 2 (a)热电接头Te/Fe界面背散射电子图片; (b) Fe和(c) Te的元素分布; (d) 热电接头Te/Fe界面新相元素成分谱图 Figure2. (a) Back scattering image of the Te/Fe interface; elemental mappings of (b) Fe and (c) Te, respectively; (d) elemental composition spectrum of new phase at the Te/Fe interface.
23.2.β(FeTe)相和ε(FeTe2)相的电性能测试 -->
3.2.β(FeTe)相和ε(FeTe2)相的电性能测试
为了解决界面元素的过度扩散以及界面质量差等问题, 本研究第二阶段基于多元梯度势场对界面粒子传输过程的协同调控作用, 引入Te和Fe的金属化合物作为Te-Fe间的阻隔层, 形成Te/FexTey/Fe梯度连接结构. 希望通过多元梯度势场效应的作用, 实现抑制界面元素过度扩散、降低界面接触电阻以及界面残余应力的目的. 观察Te和Fe的二元相图(如图3)发现, 二者之间存在的物相主要有β(FeTe), ε(FeTe2)两种. 作为热电材料和电极材料间的阻隔层, 其电性能对热电接头的性能影响较大, 将直接影响热电接头的电输运性能. 对二者Seebeck系数和电阻率进行测试, 结果如图4所示. 从图4(a)中显示的结果可以发现, β(FeTe)和ε(FeTe2)的电阻率都随温度的升高而降低, 表明两种化合物都属于半导体性质. 此外, 图4(b)中显示的Seebeck测试结果表明化合物β(FeTe)和ε(FeTe2)均属于P型半导体, 与Te基半导体热电材料属同一类型, 因此在与Te连接时界面不会形成过高的肖特基势垒. 图 3 Fe-Te二元合金相图(来源: 美国材料信息学会) Figure3. Binary phase diagram of Fe-Te (Quoted from the materials information society, ASM Interantional).
图 4β(FeTe), ε(FeTe2)的电性能测试结果 (a)电阻率; (b) Seebeck系数 Figure4. The electrical properties of β(FeTe) and ε(FeTe2): (a) Resistivity; (b) Seebeck coefficient.
表2β(FeTe)-Te界面断口特征点EDS成分扫描结果 Table2.EDS scanning results of characteristic points of β(FeTe)-Te fracture interface.
图 7 梯度连接结构Te/β(FeTe)/Fe的β(FeTe)-Te界面断口微观组织形貌和元素成分分布 Figure7. Microstructure morphology and elemental distribution of the β(FeTe)-Te fracture interface of Te/β(FeTe)/Fe.
23.4.长时间退火对热电接头Te/β(FeTe)/Fe组织结构及性能的影响 -->
3.4.长时间退火对热电接头Te/β(FeTe)/Fe组织结构及性能的影响
为了研究热电接头组织结构及性能在高温下的热稳定性, 将热电接头置于真空环境553 K进行不同时间的退火处理. 在扫描电子显微镜下对退火后样品的界面组织结构和相组成的变化进行了观察分析, β(FeTe)-Te界面和β(FeTe)-Fe界面的组织结构如图8所示. 从图8(b1)中可以发现在553 K下退火7 d后, β(FeTe)-Te间反应层ε(FeTe2)的厚度明显变薄, 而再次延长退火时间后, 反应层ε(FeTe2)厚度又保持稳定, 如图8(c1)和图8(d1)所示. 对照相图分析发现, 界面处的ε(FeTe2)与两侧材料(Te和β(FeTe))不会发生化学反应, 所以排除化学反应因素的影响. 反应层ε(FeTe2)的生成是Te与β(FeTe)在高温下扩散反应的结果, 在生成ε(FeTe2)的同时, 也对Te与β(FeTe)的进一步扩散反应产生阻碍. 界面处元素的扩散是一个热激活过程, 与温度有关的扩散系数可以表示为 图 8 梯度连接结构Te/β(FeTe)/Fe在553 K下退火不同时间后两界面组织结构图片 (a1), (a2) 0 d; (b1), (b2) 7 d; (c1), (c2) 10 d; (d1), (d2) 15 d Figure8. Interface structure pictures of Te/β(FeTe)/Fe after annealing at 553 K for different time: (a1), (a2) 0 d; (b1), (b2) 7 d; (c1), (c2) 10 d; (d1), (d2) 15 d.