Abstract:The impact phase transformation of body-centered-cubic iron is one of the hotspots in current research. Many studies demonstrated that when iron is impacted along the [100] direction, body-centered-cubic phase will transform into hexagonal close-packed phase; while when it is impacted along the [101] direction, a certain amount of face-centered-cubic phase will also appear besides hexagonal close-packed phase. The transformation from body-centered-cubic to hexagonal close-packed phase has been clarified, however, the transformation from body-centered-cubic to face-centered-cubic phase still needs further exploring. In the present work, molecular dynamics simulation is used to study the phase transformation of body-centered-cubic iron impacted along the [101] direction. The results show that the body-centered-cubic phase will transform into a close-packed structure including hexagonal close-packed phase and face-centered-cubic phase). The formation mechanism of face-centered-cubic phase is as follow. In the loading process, single crystal iron suddenly contracts along the [101] and $ [\bar101] $ directions, and expands along the [010] direction, leading to the transformation from body-centered-cubic phase to face-centered-cubic phase. The formation mechanism of hexagonal close-packed phase can be divided into two stages: first, (101) plane is compressed into close-packed plane, then hexagonal close-packed phase is obtained by the relative sliding of adjacent close-packed planes. To further investigate the formation mechanism of the close packed structure, the effect of stress state on the phase transformation of body-centered-cubic iron is further studied. Under one-dimensional (along the [101] direction) or two-dimensional loading (along [101] and $ [\bar101] $ directions), the body-centered-cubic iron transforms into face-centered-cubic iron. In the loading process the lattice constants along the three dimensions are monitored. When the transformation from body-centered-cubic phase to face-centered-cubic phase finishes, the ratio of lattice constants along three directions is 1∶1∶1.31 under one-dimensional loading; while the ratio of lattice constants is 1∶1∶1 under two-dimensional loading. Obviously, the body-centered-cubic phase transforms into distorted face-centered-cubic phase under one-dimensional loading. Under two-dimensional (along the [101] and [010] direction) and three-dimensional loading (along the [101], [010] and $ [\bar101] $ direction), the body-centered-cubic phase transforms into hexagonal close-packed phase. Gibbs free energy value for each of BCC, HCP and FCC phase is calculated. The calculation results show that the BCC phase is stable under low pressure, while the HCP and FCC phase are stable under high pressure. Finally, based on Gibbs free energy and the effect of stress state on the phase transformation, the phase transformation mechanism of body-centered-cubic iron under [101] impaction is investigated, and a reasonable explanation for the phase transformation is obtained. Keywords:molecular dynamics simulation/ phase transformation/ impact/ iron
全文HTML
--> --> --> -->
3.1.沿[101]晶向冲击模拟
图2(a)给出了单晶铁(模型一)沿[101]方向冲击过程中不同时刻X, Y和Z方向压应力沿X方向的分布情况. 从图2(a)中可以看出: 冲击波前所到位置的X方向应力从0迅速增加到大约25 GPa(即相变初始压力), 与之前的实验和模拟结果都保持一致[12,23-26]. 同时Y方向和Z方向的应力从0分别增加到大约13 GPa和4 GPa. 此时单晶铁开始发生相变. 当相变过程结束后, 该部分的X方向应力继续升高到大约53 GPa, 而Y和Z方向的应力都升高到大约40 GPa左右. 图2(b)给出了8 ps时刻模型的原子结构分析结果. 从图2(b)中可以看出大部分相变产物为HCP相(红色部分), 其中少部分变成了FCC相或者HCP相中的层错(绿色部分), 这与前人的研究结果一致[8,12]. 图 2 单晶铁沿[101]方向的冲击压缩过程(冲击速度为1.05 km/s) (a) 冲击过程中不同时刻模型中的压应力; (b) 8 ps时刻的模型, 图中蓝色、红色分别代表BCC和HCP相, 绿色代表FCC相或者HCP相的层错 Figure2. The simulation of a single crystal iron model which was impacted along [101] crystal direction (the impact speed was 1.05 km/s): (a) The stress in the impacted sample at different times; (b) the impacted sample at 8 ps. Blue and red parts represent BCC and HCP phase, respectively; green part represents FCC or stacking fault of HCP phase.
为了进一步确定图2(b)中绿色部分的原子结构, 图3给出了冲击后模型在(101)面内的投影并对其局部进行了放大. 可以看到绿色区域的原子有两种不同的结构: 第一种结构和A区域内的原子结构相同, 在该部分中BCC相的(101)晶面转变为FCC相的(100)晶面; 因此A区域内的原子确实发生了BCC到FCC的结构相变. 而B区域仅为一层原子厚度的密排晶面, 且该层和HCP的基面(1000)晶面保持平行, 因此该部分区域可以看作为HCP相中的层错, 而非FCC相. 图 3 冲击后模型向X轴((101)面)的投影(蓝球、红球和绿球分别代表位于BCC相、HCP相和FCC相(或HCP相中的层错)中的铁原子) Figure3. The atoms’ configuration on the (101) plane after impaction (blue, red and green balls represent the iron atoms in BCC phase, HCP phase and FCC phase (or stacking fault of HCP), respectively.
为了进一步分析HCP相和FCC相的形成机制, 图4给出了冲击过程中从BCC到HCP相以及从BCC相到FCC相转变过程中原子结构的变化过程. BCC-HCP相变可以由图4(a)中三层原子面描述, 第一层和第三层原子面的原子运动完全一致, 为了方便分析, 我们取第一层和第二层原子作为研究对象. 如图4(b)和图4(c)所示, 在3.8 ps以前, 冲击波还没有传播到该区域, 原子的相对位置及距离保持不变, 此时原子第一近邻(即$ {d}_{0-1}, {d}_{0-2}, {d}_{0-4} $和$ {d}_{0-5} $)大约为0.250 nm, 第二近邻(即$ {d}_{0-3} $和$ {d}_{0-6} $)大约为0.287 nm. 当应力波到达该区域后, 第二近邻距离因受压急剧减小; 5.6 ps时, 第二近邻距离被压缩到和第一近邻间距近似相等, 这时(101)面被压缩为密排面. 然后相邻密排面产生相对滑动, 到6.6 ps时已经形成HCP结构. 这种BCC-HCP相变机制和前人的结果一致[27-35]. 图4(d)给出了冲击过程中从BCC到FCC的相变过程; 并在图4(e)中进一步给出了铁原子沿X, Y和Z三个方向单位周期长度$ {a}_{x} $, $ {a}_{y} $和$ {a}_{z} $随时间的变化($ {a}_{x} $, $ {a}_{y} $和$ {a}_{z} $的初始长度分别为$ {\sqrt{2}a}_{0} $, $ {a}_{0} $和 $ {\sqrt{2}a}_{0} $, $ {a}_{0} $为BCC铁的晶格常数). 从图4(d)和图4(e)中可以看到: 3.8 ps以前, 冲击波没有传播到该位置, 三个方向的单位周期长度保持不变, 晶体为BCC结构. 3.8到5.6 ps阶段, 三个方向都略微收缩; 5.6 ps后, [101]和$ [\bar101] $方向急剧收缩, 而 [010]方向突然扩张, 最终导致${a}_{x}:{a}_{y}:{a}_{z} \!=\! 1:1:1$, 完成BCC到FCC相变. 图 4 BCC铁沿[101]晶向冲击条件下HCP和FCC相的形成机制 (a) 一个结构单元的BCC-HCP相变机制; (b) (101)面的原子运动规律(黄色箭头代表(101)面原子收缩方向, 黑色箭头代表(101)面相对滑移方向(1—6号原子和7—9号原子分别对应(a)中的第一层和第二层原子面; u为(101)面相对滑移距离.); (c) 原子间距离随冲击时间的变化; (d) BCC-FCC相变机制(为了方便观察, 将结构单元中的面心原子设置为黄色); (e) 晶格常数随冲击时间的变化 Figure4. The formation mechanisms of HCP and FCC phase under impact of BCC iron along [101] direction: (a) The BCC-HCP phase transition mechanism of a structural unit; (b) the atomic motion of (101) plane (yellow arrow represents the contraction direction of (101) plane, and black arrow represents the relative sliding direction of (101) plane (atoms 1—6 and 7—9 correspond to the first and second atomic planes in (a) respectively; u is the relative sliding distance of (101) plane); (c) the change of atomic distance with impact time; (d) BCC-FCC phase transition mechanism (set the face center atom in the structural unit to yellow for easy observation); (e) the change of lattice constant with impact time.
图5为BCC铁(模型二)沿[101]晶向单轴压缩下的相变过程. 从图5(a)可以看出单晶铁发生了BCC-FCC的整体均匀相变, 所以取其一个结构单元对相变过程进行分析. 图5(b)给出了单轴压缩过程中三个方向(X, Y和Z)的应力、单个原子总能量以及单位周期长度$ {a}_{x} $, $ {a}_{y} $和$ {a}_{z} $随加载时间的变化. 可以看到在压缩过程中X方向应力随时间线性增加, 而侧向应力(Y和Z)都近似为零; 当压缩到6.8 ps时, X方向的应力达到了临界值15.6 GPa. 初始状态三个方向晶格常数$ {a}_{x}={a}_{z}= {\sqrt{2}a}_{0}=0.406\;\mathrm{n}\mathrm{m} $, $ {a}_{y}={a}_{0}=0.287\;\mathrm{n}\mathrm{m} $(为面心四方结构), 对应能量的最低点–4.278 eV/atom. 在0—6.8 ps内, $ {a}_{x} $逐渐减小至0.363 nm, $ {a}_{y} $逐渐增大至0.313 nm, $ {a}_{z} $略微减小至0.396 nm, 该过程中能量升高至–4.196 eV/atom; 在6.8—6.9 ps内, $ {a}_{x} $和$ {a}_{z} $急剧减小, 而$ {a}_{y} $急剧增加为, 最终导致$ {a}_{x}:{a}_{y}:{a}_{z}=0.342:0.342:0.387=1:1:1.31 $, 形成晶格畸变的FCC相. 6.9 ps时刻对应的模型仍然存在应力($ {\sigma }_{x}=12.2\;\mathrm{G}\mathrm{P}\mathrm{a} $), 并且该时刻的能量达到最大值(–4.151 eV/atom), 所以该FCC相并不稳定. 在6.9—7 ps内, $ {a}_{x} $继续减小至0.287 nm, $ {a}_{y} $继续增加至0.398 nm, 而$ {a}_{z} $突然增加至0.398 nm. 在7 ps时刻对应局部能谷(–4.273 eV/atom), 表明FCC相转变为稳定的BCC相. 整个过程中BCC-FCC-BCC的晶向对应关系为 $[101]_{\rm bcc}\|[100]_{\rm fcc}\|[100]_{\rm bcc}$; ${\left[ {010} \right]_{{\rm{bcc}}}}\left\| {{{\left[ {010} \right]}_{{\rm{fcc}}}}} \right\|{\left[ {011} \right]_{{\rm{bcc}}}}$; ${\left[ { \bar 101} \right]_{{\rm{bcc}}}}\left\| {{{\left[ {001} \right]}_{{\rm{fcc}}}}} \right\|{\left[ {0 \bar 11} \right]_{{\rm{bcc}}}}$. 图5(c)给出了一个结构单元的相变过程. 在该过程中的FCC相属于中间态, 初始的BCC结构(B1)经过FCC相变最终得到转晶向的BCC结构(B2), 在7 ps后即为B2结构的压缩过程. 图 5 BCC铁沿[101]晶向在单轴压缩下的相变机制 (a) 压缩过程中的三个快照; (b)应力、晶格常数以及单个原子能量($ {E}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $)随加载时间的变化; (c) 一个结构单元的相变过程(为了方便观察, 将结构单元中的面心原子设置为黄色) Figure5. The transformation mechanism of BCC iron under uniaxial compression along [101] direction: (a) Three snapshots during compression (b) the variation of stress, lattice constant and energy of single atom ($ {E}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $) with loading time; (c) the phase transition process of a structural unit (set the face center atom in the structural unit to yellow for easy observation).
23.3.沿[101]和$ [\bar101] $同时压缩 -->
3.3.沿[101]和$ [\bar101] $同时压缩
图6为BCC铁(模型二)沿[101]和$ [\bar101] $晶向同时压缩时的相变过程. 在该应力状态下仍然会发生BCC-FCC的整体相变, 如图6((a))所示. 图6(b)显示了压缩过程中三个方向(X, Y和Z)的应力、单个原子能量以及单位周期长度$ {a}_{x} $, $ {a}_{y} $和$ {a}_{z} $随加载时间的变化(X和Z方向的应力曲线重合, $ {a}_{x} $和$ {a}_{z} $曲线重合). 由图6(b)可以看到, Y方向应力近似为零, 压缩到3.6 ps时刻, BCC铁达到临界应力8.7 GPa. 初始状态三个方向晶格常数$ {a}_{x}={a}_{z}={\sqrt{2}a}_{0}=0.406\;\mathrm{n}\mathrm{m} $, $ {a}_{y}={a}_{0}=0.287\;\mathrm{n}\mathrm{m} $(为面心四方结构), 对应能量的最低点–4.278 eV/atom. 在0—3.6 ps内, $ {a}_{x} $和$ {a}_{z} $逐渐减小至0.374 nm, $ {a}_{y} $逐渐增加至0.316 nm, 该过程中能量升高至–4.166 eV/atom; 在3.6—3.8 ps内, $ {a}_{x} $和$ {a}_{z} $急剧减小, 而$ {a}_{y} $同时急剧增加, 最终导致$ {a}_{x}:{a}_{y}:{a}_{z}=0.354:0.354:0.354=1:1:1 $; 3.8 ps时刻正好对应局部能谷(–4.171 eV/atom), 但是该时刻三个方向的应力并不为零($ {\sigma }_{x}={\sigma }_{y}={\sigma }_{z}= 5.34\;\mathrm{G}\mathrm{P}\mathrm{a} $). 继续压缩, FCC相转变为存在晶格畸变的BCC相. 图6(c)中显示了一个结构单元的相变过程. 与单轴压缩相比, 相变后的FCC晶胞没有发生晶格畸变, 而且相变临界应力较低. 因此[101]和$ [\bar101] $双向压缩更有利于BCC-FCC相变的发生. 图 6 BCC铁沿[101]和$ [\bar101] $方向同时压缩下的相变机制 (a) 压缩过程中的三个快照; (b) 应力、晶格常数以及单个原子能量随加载时间的变化; (c)一个结构单元的相变过程(结构单元中的面心原子设置为黄色) Figure6. The phase transformation mechanism of BCC iron under simultaneous compression along [101] and $ [\bar101] $ directions: (a) Three snapshots during compression; (b) the variation of stress, lattice constant and energy of single atom with loading time; (c) the phase transition process of a structural unit (set the face center atom in the structural unit to yellow for easy observation).
23.4.沿[101]和[010]同时压缩 -->
3.4.沿[101]和[010]同时压缩
图7为BCC铁(模型二)沿[101]和[010]晶向同时压缩下的相变过程. 从图7(a)可以看出单晶铁发生了BCC-HCP的整体相变. 图7(b)显示了压缩过程中应力、单个原子总能量以及原子距离随加载时间的变化. 可以看到在整个过程中, Z方向应力大致为零, 压缩到10 ps时刻, BCC铁达到临界应力25.6 GPa. 初始状态的原子距离分别为: d0–1 = d0–2 = d0–4 = d0–5 = 0.247 nm, $ {d}_{0-3}={d}_{0-6}= 0.287\;\mathrm{n}\mathrm{m} $, 对应能量的最低点–4.278 eV/atom. 在0—9 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $(第二近邻距离)逐渐减小至0.247 nm, $ {d}_{0-1}, {d}_{0-2}, {d}_{0-4} $以及$ {d}_{0-5} $(第一近邻距离)保持不变, 导致(101)面变成密排面, 该过程中能量升高为–4.148 eV/atom; 在9—10.1 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $仍然减小至0.245 nm, $ {d}_{0-1}, {d}_{0-2}, {d}_{0-4} $以及$ {d}_{0-5} $仍然保持不变, 同时7号、8号以及9号原子和相邻密排面之间产生相对滑移, 该过程中能量上升至–4.155 eV/atom; 在10.1—10.5 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $急剧减小至0.239 nm, $ {d}_{0-1}, {d}_{0-2}, {d}_{0-4} $以及$ {d}_{0-5} $增加至0.259 nm, 最终得到晶格畸变的HCP相, 10.5 ps正好对应局部能谷(–3.865 eV/atom), HCP相处于亚稳态. 与之相对应的相变过程在图7(c)中给出, 其中$ {d}_{1-2}, {d}_{0-3}, {d}_{0-6}, {d}_{4-5} $和$ {d}_{8-9} $变化保持一致. 图 7 沿[101]和[010]方向同时压缩下BCC铁的相变机理 (a) 压缩期间的三个快照(蓝色和红色球分别代表BCC相和HCP相的铁原子); (b) 应力、原子距离以及单个原子能量随加载时间的变化(原子距离与(c)中原子相对应); (c) BCC-HCP相变机制(黄色箭头代表(101)面原子收缩方向, 黑色箭头代表(101)面相对滑移方向) Figure7. The transformation mechanism of BCC iron under simultaneous compression along [101] and [010] directions: (a) Three snapshots during compression (blue and red spheres represent the iron atoms of BCC and HCP phases respectively); (b) the variation of stress, atomic distance and energy of single atom with loading time (the atomic distance corresponds to the atom in (c)); (c) BCC-HCP phase transformation process (yellow arrow represents the contraction direction of (101) plane, and black arrow represents the relative sliding direction of (101) plane).
23.5.沿[101]、[010]和$ [\bar101]$三个方向同时压缩 -->
3.5.沿[101]、[010]和$ [\bar101]$三个方向同时压缩
图8为BCC铁(模型二)沿[101], [010]以及$ [\bar101] $三个晶向同时压缩下的相变过程. 在该应力状态下仍然会发生BCC-HCP的整体相变, 如图8(a)所示. 图8(b)给出了在压缩过程中应力、单个原子总能量以及原子距离随加载时间的变化. 由图8(b)可以看到: 初始状态的原子距离分别为: d0–1 = d0–2 = d0–4 = d0–5 = 0.247 nm, d0–3 = d0–6 = 0.287 nm, $ {d}_{1-5}=0.405\;\mathrm{n}\mathrm{m} $, 对应能量的最低点–4.278 eV/atom. 在0—11.2 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $(第二近邻距离)逐渐减小至0.274 nm, d0–1, $ {d}_{0-2}, {d}_{0-4} $以及$ {d}_{0-5} $(第一近邻距离)逐渐减小至0.237 nm, 该过程中能量升高至–4.158 eV/atom; 在11.2—12.5 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $减小为0.250 nm, 然而仍然没有转变为密排面; 在12.5—13.5 ps内, $ {d}_{0-3} $和$ {d}_{0-6} $在逐渐减小为0.238 nm的过程中7号、8号以及9号原子和相邻密排面之间产生相对滑移(滑移距离u ≈ 0.069 nm). 在整个过程中, 能量曲线在11.2, 12.5 s和13.5 ps出现三个突变点, 前两个对应$ {d}_{0-3} $和$ {d}_{0-6} $在该时刻的突变, 第三个突变点则对应HCP相变的完成. 相变临界压力为30 GPa, 相变过程显示在图8(c)中. 相变完成后, 继续加压到40 GPa, 晶体结构分析发现铁仍然稳定于HCP相. 相变发生时能量没有局域极小值, 而是随压力的增加线性升高, 这是因为HCP所受到的压力继续增大, 弹性应变能升高所致. 图 8 BCC铁在三轴压缩下的相变机理 (a) 压缩过程中的三个快照(蓝色和红色的球分别代表BCC相和HCP相的铁原子); (b) 应力、原子距离以及单个原子能量随加载时间的变化(原子距离与(c)中原子相对应); (c) BCC-HCP相变机制(黄色箭头代表(101)面原子收缩方向, 黑色箭头代表(101)面相对滑移方向) Figure8. The phase transformation mechanism of BCC iron under triaxial compression: (a) Three snapshots during compression (blue and red spheres represent the iron atoms of BCC and HCP phases respectively); (b) the variation of stress, atomic distance and energy of single atom with loading time (the atomic distance corresponds to the atom in (c)); (c) BCC-HCP phase transformation process ( yellow arrow indicates the contraction direction of (101) plane atom, and black arrow indicates the relative sliding direction of (101) plane atom).