1.College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China 2.Key Laboratory of Geophysical Exploration Equipment, Ministry of Education, Jilin University, Changchun 130061, China
Abstract:Magnetic resonance sounding (MRS) technology used to detect groundwater directly and quantificationally, which owns the advantages of rich information and low cost. In these years, it has shown significant potential applications in hydrological detections. Considering the traditional measurements with the geomagnetic field, the nano-valt MRS signals are easy to suppress to environmental noise. As one of the MRS signal enhancement methods, the adiabatic pulse was quite popular recently. It is transmitted with variable frequency and amplitude pulse satisfying the adiabatic condition, which can enhance the signal amplitude and signal-to-noise ratio several times. However, there are only a few reports about this method, especially its geophysical modeling. Thus, we introduce the calculating progress of transverse magnetization and kernel function for this method. By employing the interpolation, the computation cost of forward modeling is obviously reduced. Moreover, several different settings of adiabatic transmitting factors are also proceeded to obtain certain results. In conclusion, a pulse moment with 80 ms transmitting duration and 30 quality factor produces a maximum signal amplitude that is enhanced 16.56 times for deep areas. The research in this paper could provide powerful support for MRS method used in noisy environments. Keywords:magnetic resonance sounding/ adiabatic pulse/ signal amplitude/ numerical simulation
由于激发过程中, $\left| {I{{B}}_{\rm{T}}^ + } \right|$(发射电流I )不断增大, ${{\Delta \omega } / \gamma }$不断减小到零, 其时序如图2(a)所示. 即最终激发磁场${{{B}}_{\rm{eff}}} = I{{B}}_{\rm{T}}^ +$, ${{{M}}_0}$围绕x轴旋进, 此时, 横向磁化强度${{M}}_0^ \bot$由x分量(${{M}}_0^x$)及y分量(${{M}}_0^y$)两部分组成. 由于整个激发过程中, ${{{M}}_0}$大小不变, 所以其运动过程可看作在以坐标原点为球心, 半径为${M_0}$的球体表面做弧形运动(图2(b)). 图 2 绝热磁共振激发过程 (a) 发射时序, 红色曲线为发射电流, 蓝色曲线为FID信号; (b) 激发磁场与磁化强度示意图, 深红箭头和蓝色线分别表示激发磁场与磁化强度 Figure2. Excitation process of the adiabatic pulses: (a) The sequence diagram of the transmitting current (red) and FID signal (blue); (b) the relationship of the excitation magnetic field (dark red arrow) and magnetization (blue line).
图3(a)和图3(b)为拉莫尔频率${f_0}$ = 2330 Hz, 发射线圈品质因数Q = 30情况下, 80 ms的双曲正切绝热半波幅值与频率调制函数[36]. 经过(13)式计算得到对应横向磁化强度分布, 如图3(c)所示. 为了分析地下各个位置对于探测的灵敏程度, 通常还需计算探测的灵敏度核函数: 图 3 双曲正切绝热半波横向磁化强度与有效激发磁场关系图(品质因数Q = 30, 脉冲持续时间τ = 80 ms) (a)发射波形实时幅值; (b)频率调制函数; (c)磁化强度x分量、y分量及模值 Figure3. The relationship of transverse magnetization and exciting magnetic based on hyperbolic tangent AHP pulse: (a) The waveform of transmitting current amplitude; (b) its frequency vs. time; (c) magnetization x-component, y-component and real value.
根据仿真得到的横向磁化强度与激发磁场大小关系, 选定0.01—7.3 A·s之间按对数分布的40组脉冲矩, 并设定发射线圈品质因数Q = 30, 计算同一脉冲矩对应不同脉冲电流、持续时间分布对灵敏度核函数及正演结果的影响. 由图6和图7可知, 在同一脉冲矩分布条件下, 随着脉冲持续电流延长(对应发射电流缩小), 灵敏度核函数实部分布趋势基本不变, 但在脉冲持续时间小于80 ms时, 其实部峰值随$\tau$增大而缓慢缩小, 相对应的虚部峰值则缓慢增大. 当脉冲持续时间大于等于80 ms时, 无论是灵敏度核函数的实部、虚部均基本保持不变. 图 6 相同脉冲矩(0.01—7.3 A·s)情况下, 脉冲持续时间τ不同时绝热半波对应的灵敏度核函数实部(品质因数Q = 30) (a) τ = 20 ms, 最大600 A电流; (b) τ = 40 ms, 最大300 A电流; (c) τ = 60 ms, 最大200 A电流; (d) τ = 80 ms, 最大150 A电流; (e) τ = 100 ms, 最大120 A电流; (f) τ = 120 ms, 最大100 A电流; (g) τ = 140 ms, 最大85.7 A电流; (h) τ = 160 ms, 最大75 A电流 Figure6. The real kernel function of adiabatic half-passage pulses for the same pulse moment corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms with maximum current 600 A; (b) τ = 40 ms with maximum current 300 A; (c) τ = 60 ms with maximum current 200 A; (d) τ = 80 ms with maximum current 150 A; (e) τ = 100 ms with maximum current 120 A; (f) τ = 120 ms with maximum current 100 A; (g) τ = 140 ms with maximum current 85.7 A; (h) τ = 160 ms with maximum current 75 A.
图 7 相同脉冲矩(0.01—7.3 A.s)情况下, 脉冲持续时间τ不同时绝热半波对应的灵敏度核函数虚部(品质因数Q = 30) (a) τ = 20 ms, 最大600 A电流; (b) τ = 40 ms, 最大300 A电流; (c) τ = 60 ms, 最大200 A电流; (d) τ = 80 ms, 最大150 A电流; (e) τ = 100 ms, 最大120 A电流; (f) τ = 120 ms, 最大100 A电流; (g) τ = 140 ms, 最大85.7 A电流; (h) τ = 160 ms, 最大75 A电流 Figure7. The imaginary kernel function of adiabatic half-passage pulses for the same pulse moment corresponding to different τ, with quality factor Q = 30: (a) τ = 20 ms with maximum current 600 A; (b) τ = 40 ms with maximum current 300 A; (c) τ = 60 ms with maximum current 200 A; (d) τ = 80 ms with maximum current 150 A; (e) τ = 100 ms with maximum current 120 A; (f) τ = 120 ms with maximum current 100 A; (g) τ = 140 ms with maximum current 85.7 A; (h) τ = 160 ms with maximum current 75 A.
假设地下存在均匀的10%含水体, 根据灵敏度核函数计算得到正演响应, 如图8所示. 可以看到, 在同一脉冲条件下, 不同的发射时间及电流分布能够达到的信号提升量级基本相似, 但较短的脉冲发射时间配合大发射电流, 能够在浅层取得更大的信号幅度. 随着脉冲发射时间增大, 即相应电流减小, 大脉冲矩对应的深部信号在一定范围内增强; 但若脉冲发射时间过长, 由于发射电流总体较小, 对应激发磁场相对也小, 总体信号提升效果反而变差. 即具体探测时, 还需根据探测目标深度、探测环境及实际探测线圈配置, 确定发射电流幅度与持续时间分布关系. 本文选用的实验配置, 在60 ms发射时间时, 能达到较优的信号增强效果. 图 8 相同脉冲矩(0.01—7.3 A·s)情况下, 在不同脉冲持续时间及电流条件时绝热半波对应的正演响应(假设地下半空间内存在10%均匀的含水量, 发射线圈的品质因数Q = 30) Figure8. The forward modeling of adiabatic half-passage pulse for the same pulse moment (0.01–7.3 A·s) with different τ and current. The modeling assume a homogeneous aquifer subsurface with 10% water content, the quality factor Q = 30.
图 10 相同绝热脉冲电流(1—600 A)条件下, 品质因数Q不同时绝热半波对应的正演响应(灰色虚线为传统激发方式信号响应, 假设地下半空间内存在10%均匀的含水量, 发射脉冲持续时间为80 ms) Figure10. The forward modeling of adiabatic half-passage pulse for the same pulse current (1–600 A) with different quality factor Q (The gray dotted line is the initial amplitude of traditional nuclear magnetic resonance responses). The modeling assume a homogeneous aquifer subsurface with 10% water content with τ = 80 ms.