1.Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3.Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 51625101, 51961145305, 51971026, 51431009) and the Fundamental Research Fund for the Central Universities, China (Grant No. FRF-TP-16-OO1C2)
Received Date:13 January 2020
Accepted Date:14 February 2020
Published Online:05 May 2020
Abstract:Magnetic imaging technology based on photo-emission electron microscopy (PEEM) has become an important and powerful tool for observing the magnetic domain in spintronics. The PEEM can get access to real-time imaging with high spatial resolution and is greatly sensitive to the spectroscopic information directly from the magnetic films and surfaces through photoemission process with variable excitation sources. Moreover, the breakthrough in the deep ultraviolet (DUV) laser technology makes it possible to realize domain imaging without the limitation of synchrotron radiation facilities or the direct excitation of photoelectrons due to the high enough photon energy of the source in the current threshold excitation study. In this review article, the deep ultraviolet photo-emission electron microscopy system is first introduced briefly. Then, a detailed study of the magnetic domain observation for the surface of L10-FePt films by the DUV-PEEM technique is presented, where a spatial resolution as high as 43.2 nm is successfully achieved. The above results clearly indicate that the DUV-PEEM reaches a level equivalent to the level reached by X-ray photoemission imaging technique. Finally, a series of recent progress of perpendicular FePt magnetic thin films obtained by the DUV-PEEM technique is provided in detail. For example, a stepped Cr seeding layer is used to form the large-area epitaxial FePt films with (001) and (111) two orientations, where magnetic linear dichroism (MLD) with large asymmetry is observed in the transition area of two phases. The signal of MLD is 4.6 times larger than that of magnetic circular dichroism. These results demonstrate that the magnetic imaging technology based on DUV-PEEM with excellent resolution ability will potentially become an important method to study magnetic materials in the future. Keywords:photo-emission electron microscopy/ deep ultraviolet laser/ magnetic circular/linear dichroism/ high resolution magnetic imaging
由于PEEM磁成像过程中磁畴的衬度与入射光的偏振状态存在关联, 激光偏振态可调对于利用DUV-PEEM系统开展磁畴成像的研究尤为重要, 因此需要在光路系统中引入偏振调制模块. 通过使用λ/4波片可实现圆偏振态旋性的切换 (图1(a)), 通过使用λ/2波片来实现线偏振态偏振方向的连续可变(图1(b))[69]. 以此为基础, 177.3 nm深紫外激光将可用于磁性薄膜体系中近费米能级光电子激发的磁二色效应研究与磁畴结构观察. 图 1 (a)通过λ/4波片输出圆偏振态DUV激光; (b)通过λ/2波片调制DUV激光线偏振态[69] Figure1. Schematic drawings of the DUV laser optical system with (a) circular and (b) linear polarizations[69].
22.3.深紫外激光-光发射电子显微镜系统 -->
2.3.深紫外激光-光发射电子显微镜系统
在本系统中, 波长为177.3 nm深紫外激光源以图2所示的方式接入PEEM系统, 激光穿过PEEM系统中的棱镜与能量选择器之间的狭缝并从物镜孔中射出, 以几乎正入射的状态到达样品表面, 此时激光圆形光斑直径约为1 mm. 图 2 深紫外激光与PEEM的连接示意图 Figure2. Optical system of the DUV-PEEM system.
据此, 接入了深紫外激光源的PEEM系统可使用正入射的深紫外激光(光子能量hν = 7.0 eV)与斜入射高压Hg灯输出的紫外光(称为UV光, 光子能量hν = 4.9 eV)进行PEEM观测. 需要指出的是, PEEM系统可结合其低能电子显微镜(low energy electron microscopy, LEEM)和低能电子衍射(low energy electron diffraction, LEED)技术, 实现多模式协同工作, 如图3所示[69]. 图 3 深紫外激光-光发射电子显微镜系统装置示意图[69] Figure3. A schematic layout of the DUV laser-based LEEM/PEEM system[69].
22.4.光发射电子显微镜系统与超高真空分子束外延系统的连接 -->
2.4.光发射电子显微镜系统与超高真空分子束外延系统的连接
由于PEEM成像技术对样品表面的平整度与洁净度要求极为严苛, 为此我们构建了联合实验系统, 将上述PEEM系统与超高真空分子束外延(MBE)系统通过超高真空管道与中间腔体相互连接(如图4所示), 使得样品从制备、传输、直到表征测量的整个过程不脱离超高真空环境, 可实现高质量单晶外延薄膜制备、样品传输、与高分辨PEEM/LEEM观测等一系列实验流程. 图 4 MBE-PEEM系统连接示意图和实物照片 Figure4. Schematic setup and photo of MBE-PEEM combined system.
深紫外激光光源具有光子能量高的优势, 可对3d磁性金属、重金属以及其合金薄膜表面实现光电子激发. 下面将以L10-FePt薄膜为研究对象, 基于DUV-PEEM系统进行磁畴结构的观测和分析[69]. L10-FePt合金具有面心四方结构, 实验中利用MBE技术成功制备出具有(001)晶体取向的高质量单晶L10-FePt薄膜样品, 采用与L10-FePt/MgO/ L10-FePt磁性隧道结工作[72]中类似的样品结构和制备工艺, 如图10(a)所示. 相关的磁性测量数据表明该样品具有良好的垂直磁各向异性, 其中磁滞回线如图10(a)所示(1 Oe = 103/(4π) A/m). 图 10 (a) MgO/Cr (5 nm)/Pt (10 nm)/FePt (20nm)结构样品垂直于膜面的磁滞回线; (b) FePt薄膜的LEEM图像(Ep = 8.6 eV), 插图所示为该区域的LEED图像(Ep = 16.3 eV); (c)图(b)红色方框标识区域使用圆偏振DUV获得的PEEM磁畴图像; (d)使用磁力显微镜采集同一样品的磁畴照片; (e)插图所示视野内对DUV-PEEM磁畴成像空间分辨率的测定[69] Figure10. (a) Schematic structure and out-of-plane hysteresis loop of MgO (001) sub. /Cr (5 nm)/Pt (10 nm)/FePt (20 nm) films; (b) LEEM image (Ep = 8.6 eV) and LEED (Ep = 16.3 eV) pattern (inset) of FePt film; (c) magnetic domain (contrast enhanced) of the area marked by a red dashed rectangle in (b) taken with circularly polarized DUV laser; (d) magnetic domain image of the FePt films with the same structure obtained by magnetic force microscopy; (e) normalized line profile with the estimated spatial resolution from selected area marked in inset[69].
其中IR与IL分别为右旋光与左旋光对应的图像强度, $ {I_{\rm{R}}}/{I_{\rm{L}}}$由运算后的磁畴图像给出, 区域1与区域2对应其中的亮区与暗区, 计算得到AMCD的值为2.2%. 对于正入射的线偏振光, 由于垂直磁各向异性薄膜中磁矩方向垂直于激光偏振方向, 所以不论电场矢量在偏振面内怎样转动, 其与磁矩的相对关系都是等效的, 因此产生的磁线二色信号在理论上应为零, 这在实验中也得到了证实. 单晶外延生长的FePt薄膜晶体结构取决于先它生长的种子层(Pt层), 而Pt层的晶体取向又可以通过缓冲层(这里选择Cr插层)来进行有效的调控[72,78,79]. 利用MBE系统中配置的垂直双挡板, 可以在MgO (001)衬底上设计出Cr的“台阶”底层结构(图11(a)所示[69]), 诱导实现Pt种子层(001)和(111)两种晶向各占据表面一半的共存状态. 图 11 (a) Cr纳米台阶上外延生长的Pt种子层结构示意图; (b) Pt种子层的UV-PEEM图像; (c)暗区A对应的LEEM与LEED图像; (d)亮区B对应的LEEM与LEED图像; (e)过渡区域的LEEM图像(区域A, B与C的位置在(b)图中标出); (f) Pt种子层选区((b)图中红色线框) DUV-PEEM图像; (g)与(f)图同区域的线二色DUV-PEEM图像[69] Figure11. (a) Schematic drawing of a Pt seed layer with Cr step. (b) UV PEEM image of Pt seed layer consisting of two orientations. LEEM and LEED patterns of the selected areas marked by blue rectangles in panel (b): (c) dark area A, (d) light area B and (e) boundary area C. (f) DUV-PEEM image of the selected area marked by a red dashed rectangle in panel (b). (g) Linear dichroism image of the same area as panel (f)[69].
图11(b)给出了双晶体取向Pt种子层结构的UV-PEEM成像, 视野中两侧区域呈现出明显衬度差异, 其中标记A, B与C分别对应视野中暗区、亮区与边界区位置(图中蓝色标记), 结合LEEM/LEED技术对两侧区域进行更为精确的分析[69]. 标记A处的LEEM图像中呈现的清晰原子台阶形貌与锐利的六重对称性LEED图谱, 如图11(c)所示, 证明了该处是高质量Pt (111)面; 标记B处则呈现岛状形貌的LEEM图像及形成(5 × 1)重构的四重对称性LEED图谱, 如图11(d)所示, 这也是高质量Pt (001)面的典型特征; 而标记C位置为Pt(111)晶面与(001)晶面区域的分界, 可通过不同电子初始能量下的LEEM图像得以确定, 如图11(e)所示, 证实了两侧衬度的差异是由晶面取向不同导致的功函数差异造成的[80]. 图11(f)给出了Pt种子层选区(图11(b)中红色线框内) DUV-PEEM图像, 可以看出清晰的图案. 对图11(f)图像区域, 采用不同线偏振态深紫外激光激发, 获得对应的图像, 扣除非磁信息后获得的图像如图11(g)所示. 可以看出, 经过运算后(扣除非磁本底)的图像, 在Pt双取向的“台阶”分界处没有呈现出依赖于激光偏振方向的线二色信息, 证明了线偏振的调制在非磁表面不具有线二色性. 类似的结论在圆偏振深紫外激光实验中也得到了证实. 在上述Pt (111)和Pt (001)共存的基础上, 采用MBE技术, 继续生长20 nm厚的FePt铁磁薄膜, 采用DUV-PEEM对其磁畴结构进行观察. 由于FePt薄膜的外延结构依然取决于其底层的Pt薄膜, 可以推测FePt薄膜也将出现两种晶体取向共存的现象. 图12(a)为紫外汞灯为光源的PEEM图像, 从UV-PEEM图像中仍然能够看到不同晶体取向的FePt间形成的功函数衬度[69]. 图中明暗两区域的晶体取向可以通过LEED图谱给出, 如图12(b)和图12(c)所示. 与在Pt表面观测到的结果类似, FePt薄膜表面同样实现了(001)与(111)两种取向共存的状态. 将光源从紫外汞灯换成深紫外激光后再次进行表面结构观察, 图12(d)为图12(a)中邻近两晶体取向边界的暗区(红色线框标注位置)的深紫外激光PEEM图像. 可以明显看出与UV-PEEM图像相比, DUV-PEEM图像呈现出了更多的样品表面信息. 采用旋性不同的圆偏振态激光对上述FePt薄膜样品区域进行DUV-PEEM图像采集, 通过除法运算来扣除非磁表面的信息, 可以得到该区域的磁圆二色衬度, 对应的磁畴结构如图13(a)—(c)所示[69]. 与之前(001)取向L10-FePt表面得到的磁畴图像相比, 该区域磁畴结构差异明显, 呈“块状”形态且尺寸更大. 经过计算得到该区域的AMCD数值为2.5%, 与之前的实验结果相近. 图 12 (a)在具有双晶体取向的Pt种子层上生长FePt后的UV-PEEM图像; (b)区域I ((a)图标注位置)的LEED图像; (c)区域II的LEED图像; (d)使用线偏振态深紫外激光在选定区域((a)图红色线框标记位置)采集的DUV-PEEM图像[69] Figure12. (a) UV-PEEM image of FePt film deposited on Pt seed layer with two orientations. LEED patterns of selected areas marked by blue rectangles in panel (a): (b) light area I and (c) dark area II. (d) DUV-PEEM image of the selected area marked by a red dashed rectangle in panel (a) taken with linearly polarized laser[69].
图 13 在同一视野下分别使用(a)左旋与(b)右旋的圆偏振态深紫外激光采集的DUV-PEEM图像; (c)计算得到的MCD磁畴图像; 在同一视野下分别使用偏振方向为(d)竖直与(e)水平的线偏振态激光采集的DUV-PEEM图像; (f)计算所得MLD磁畴图像; (g)磁线二色衬度随激光偏振方向的变化规律[69] Figure13. DUV-PEEM images taken with (a) left-circularly polarized and (b) right-circularly polarized light; (c) MCD image of FePt film; (d), (e) DUV-PEEM images taken with linearly-polarized laser (polarization shown by red arrow); (f) MLD image of FePt film; (g) polarization dependent MLD asymmetry for the selected area[69].