Abstract: Semiconductor laser (SL) can output chaotic lasers under external disturbances such as optical injection or optical feedback, and the bandwidth can reach up to GHz magnitude. External-cavity feedback semiconductor lasers can output high-dimensional chaotic lasers and are considered to be better sources of chaotic entropy. However, due to external cavity feedback and other effects, it will give rise to obvious external cavity time delay signature (TDS) in the output chaotic laser, which restricts the application of chaotic lasers. On the other hand, the bandwidth of chaotic laser determines the transmission rate of confidential communication, and therefore TDS and bandwidth are two important parameters that will affect chaotic laser’s applications. Therefore, it is significant to take appropriate measures to suppress the TDS and increase the bandwidth of chaotic laser output by semiconductor laser. In this paper the output laser from a semiconductor laser with single optical feedback is partially injected to another semiconductor laser with double filtered optical feedback. Thus they form a semiconductor laser system with external optical injection and double filtered optical feedback, i.e. a master-slave laser system which is used to suppress the TDS of chaotic laser and investigate its bandwidth. We numerically investigate the influences of external light injection coefficient, feedback intensity, pumping factor, and filter bandwidth on TDS. Then the suppression effects of this system on TDS are analyzed and compared with those of semiconductor laser system with external optical injection and single optical feedback, those of semiconductor laser system with external optical injection and double optical feedback, those of semiconductor laser system with external optical injection and single filtered optical feedback, and those of semiconductor laser system with double filtered optical feedback. The results show that the proposed scheme in this paper has the best suppression effect on TDS. Then the bandwidth of the chaotic laser output from the system is investigated under the condition of parameters of effectively suppressing TDS. The results show that the system proposed in this paper can increase the bandwidth of the system output chaotic laser by properly selecting the parametric values, and the maximum bandwidth value of the obtained chaotic laser is about 8.8 GHz. The above investigations indicate the effectiveness of the proposed scheme. The results of this investigation are significant for the application of chaotic lasers. Keywords:semiconductor laser/ filtered optical feedback/ time delay signature/ bandwidth
$\begin{split}{ {MI}}\left( {\Delta t} \right) =\; & \sum\limits_{I\left( t \right),I\left( {t + \Delta t} \right)} {p[I\left( t \right),I\left( {t + \Delta t} \right)]}\\ & \times\lg \frac{{p[I\left( t \right),I\left( {t + \Delta t} \right)]}}{{p[I\left( t \right)]p[I\left( {t + \Delta t} \right)]}},\end{split}$
其中$p[I\left( t \right), I\left( {t + \Delta t} \right)]$表示联合概率密度, $p[I\left( t \right)]$和$p[I\left( {t + \Delta t} \right)]$分别表示边缘概率密度.
3.TDS的数值研究和分析首先对本文提出的SL-EOI-DFOF系统数值研究外腔延迟时间${\tau _1}$对TDS的影响, 然后进一步研究外光注入系数${k_{{\rm{in}}}}$和反馈强度${k_{{\rm{f1}}}}$对TDS的影响, 最后在相同的参数条件下将SL-EOI-DFOF系统对TDS的抑制效果和具有外光注入的单路光反馈半导体激光器(semiconductor laser with external optical injection and single optical feedback, SL-EOI-SOF)系统、具有外光注入的双路光反馈半导体激光器(semiconductor laser with external optical injection and double optical feedback, SL-EOI-DOF)系统、具有外光注入的单路滤波光反馈半导体激光器(semiconductor laser with external optical injection and single filtered optical feedback, SL-EOI-SFOF)系统以及无光注入双路滤波光反馈半导体激光器(semiconductor laser with double filtered optical feedback, SL-DFOF)系统进行对比和分析. 23.1.延迟时间${\tau _1}$对TDS的影响 -->
下面取对TDS抑制效果较好的延迟时间${\tau _1} = 2.8\;{\rm{ns}}$, 其他参数取值与图2(b2)相同, 数值求解方程(1)—(6), 得到图3所示的系统输出混沌激光的延时特征值$\beta $随外光注入系数${k_{{\rm{in}}}}$和反馈强度${k_{{\rm{f1}}}}$变化的二维图. 图 3 SL-EOI-DFOF输出混沌激光延时特征值$\beta $随参数${k_{{\rm{in}}}}$和${k_{{\rm{f1}}}}$变化的二维图 Figure3. Two-dimensional maps of the time-delay characteristic $\beta $ in the parameter space of ${k_{{\rm{in}}}}$ and ${k_{{\rm{f1}}}}$ of chaotic laser from the SL-EOI-DFOF.
这里取${P_{\rm{m}}} = 1.4$, ${\varLambda _1} = 20{\rm{GHz}}$, ${k_{{\rm{in}}}}$分别选择0, 0.1, 0.2, 其他参数值与图5相同. 数值求解方程(1)—(6), 得到系统输出混沌激光的时间序列和功率谱如图6所示. 由图6(a1)—(a3)可见时间序列呈现无规则的起伏, 说明激光器此时输出的是混沌激光. 图 6 SL-EOI-DFOF在不同的外光注入系数${k_{{\rm{in}}}}$下输出混沌激光的(a1)?(a3)时间序列以及(b1)?(b3)对应的功率谱 (a1), (b1)${k_{{\rm{in}}}} = 0$; (a2), (b2)${k_{{\rm{in}}}} = 0.1$; (a3), (b3)${k_{{\rm{in}}}} = 0.2$, 其中(b1)—(b3)中的虚线标示了混沌激光3 dB带宽的值 Figure6. Time series (a1)?(a3) and the corresponding power spectra (b1)?(b3) of chaotic laser from SL-EOI-DFOF at different external light injection coefficient ${k_{{\rm{in}}}}$: (a1), (b1) ${k_{{\rm{in}}}} = 0$; (a2), (b2) ${k_{{\rm{in}}}} = 0.1$; (a3), (b3)${k_{{\rm{in}}}} = 0.2$, the dashed lines in (b1)?(b3) indicate the value of the 3 dB bandwidth of the chaotic laser.
对图6(b1)—(b3)中的功率谱进行拟合, 得到平滑后的功率谱曲线 (见功率谱中的白色曲线), 可以看出, 随着${k_{{\rm{in}}}}$的增大, 系统输出混沌激光的功率谱变得平坦, 即带宽有明显的展宽, 经过分析得到图6(b1)—(b3)对应的3 dB带宽分别为4.33, 5.21和7.64 GHz. 即在所选参数条件下, 改变外光注入系数${k_{{\rm{in}}}}$, 则激光器输出混沌激光的带宽随之增大. 为了展示混沌激光的带宽随外光注入系数${k_{{\rm{in}}}}$的整体变化趋势, 下面以${k_{{\rm{in}}}}$作为控制参数, 其他参数的取值与图6相同, 数值求解方程(1)—(6), 得到系统输出混沌激光的3 dB带宽随外光注入系数${k_{{\rm{in}}}}$的变化如图7所示. 图 7 SL-EOI-DFOF输出混沌激光的带宽随${k_{{\rm{in}}}}$的变化 Figure7. Bandwidth versus ${k_{{\rm{in}}}}$ of chaotic laser from the SL-EOI-DFOF.
下面以反馈强度${k_{{\rm{f1}}}}$作为控制参数, 其他参数取值与图8相同, 数值求解方程(1)—(6), 得到系统输出混沌激光的3 dB带宽随${k_{{\rm{f1}}}}$的变化如图9所示. 图 9 SL-EOI-DFOF输出混沌激光的带宽随${k_{{\rm{f1}}}}$的变化 Figure9. Bandwidth versus ${k_{{\rm{f1}}}}$ of chaotic laser from the SL-EOI-DFOF.
下面以抽运因子${P_{\rm{m}}}$作为控制参数, 其他参数取值与图9相同, 数值求解方程(1)—(6), 得到系统输出混沌激光的3 dB带宽随${P_{\rm{m}}}$的变化如图10所示. 图 10 SL-EOI-DFOF输出混沌激光的带宽随${P_{\rm{m}}}$的变化 Figure10. Bandwidth versus ${P_{\rm{m}}}$ of chaotic laser from the SL-EOI-DFOF.