1.Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China 2.School of Instrument and Electronics, North University of China, Taiyuan 030051, China
Fund Project:Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2017YFB0503100), the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. 61727804), the National Natural Science Foundation of China (Grant Nos. 51635011, 51727808, 51922009, 61704158), the Shanxi Provincial Research Foundation for Basic Research, China (Grant Nos. 201901D111011(ZD), 201901D211254, 201801D221202, 201801D221213), the Key Research and Development Foundation of Shanxi Province, China (Grant No. 201803D121067), the Science and Technology Innovation Project of the Higher Education of Shanxi Province, China (Grant No. 2019L0558), the Natural Science Foundation of the North University of China (Grant No. XJJ201808), and the Fund for Shanxi “1331Project” Key Subjects Construction, China
Received Date:12 January 2020
Accepted Date:23 April 2020
Available Online:09 May 2020
Published Online:01 July 2020
Abstract:The nitrogen-vacancy (NV) centers in diamond have the advantages of stable triaxial structure, ultra-long electron spin coherence time and simple optical readout at room temperature. A nitrogen atom in the diamond crystal replaces a carbon atom and a vacancy is generated at the adjacent position, forming a point defect in the C3v space group structure. Its ground state and excited state are both spin triplet states. It is the key to achieving efficient preparation of optical initial state and extracting NV color center’s information in the researches of highly sensitive sensing magnetic detection, temperature detection, biological imaging, quantum computing, etc. However, there was no systematic study on relevant parameters of laser for high-concentration NV color center’s samples in previous experimental studies. Based on a high concentration diamond NV ensemble, we use pulsed optical detection magnetic resonance (ODMR) technology to systematically study the relationship among laser initial polarization time, information reading time and laser power, and the influence of laser incident polarization angle on the accuracy of sensing information. The effects of various laser parameters on the NV1 peak of ODMR on the [111] axis of the NVs of diamond are also investigated. The contrast of ODMR increases firstly with a sigmoid function and then decreases with an e-exponential function as the information reading time increases. The incident polarization angle of the laser is sinusoidal, with a period of 90°. According to the above experimental results, we finally choose the appropriate experimental parameters at 45.8 W/cm2 (300 μs of polarization, 700 ns, reading time, laser incident angle is 220°) for ODMR test. Compared with previous experimental parameters (polarization time was 50 us, read the time of 3000 ns, laser incident angle was 250°), the experimental results show that the contrast of ODMR increases from 2.1% to 4.6%, and the typical magnetic sensitivity is improved from 21.6 nT/Hz1/2 to 5.6 nT/Hz1/2. The optimization of the optical control of NVs in solid diamond is realized. The above results provide an effective support for the detection of high-sensitivity manipulation sensing based on high-concentration NV ensemble. Keywords:nitrogen-vacancy center/ pulse optical magnetic resonance/ laser parameters
全文HTML
--> --> --> -->
2.1.实验原理
NV色心是由于金刚石晶体中的一个碳原子(C)被一个氮原子(N)取代, 同时相邻位置会产生一个空位(V)形成的. NV色心具有两种状态, 分别是NV0和NV–[20], 其中NV–具有光学极化以及自旋读出能力[21], 所以本文的研究针对NV–展开. 在后文的描述中, 如果没有特指, NV均表示NV–, 其能级结构如图1(a)所示[22], 其中基态和激发态均为自旋三重态, 同时NV色心含有一个单亚稳态1A1. 在零磁场下, 基态ms = ± 1能级处于简并状态, 且与ms = 0能级间有2.87 GHz的零场劈裂[23]. NV色心的能级跃迁方式有两种, 分别是发生在激发态和基态之间的自旋守恒的辐射跃迁和通过亚稳态进行的自旋不守恒的非辐射跃迁[24]. 处于ms = 0态的电子主要进行辐射跃迁并释放出波长范围在638—800 nm的荧光; 处于ms = ± 1态的电子则主要发生非辐射跃迁, 先衰减到亚稳态1A1, 再经过弛豫过程回到ms = 0, 这个过程不发出波长为638—800 nm的荧光. 图 1 (a) 金刚石NV色心的能级结构; (b) 金刚石NV色心实验装置; (c) 实验时序示意图; (d) 沿着[111]轴向施加磁场的ODMR Figure1. (a) Energy level structure of NV center; (b) sketch of experimental setup; (c) sketch of timing sequence; (d) ODMR with a magnetic field along the [111] axis.
在对NV色心高精度磁传感测量中, 首先要完成NV色心自旋态的初始化, 因此先对NV色心的极化时间展开测量. 通过调整第一块半波片控制照射到样品的532 nm激光的光功率密度, 观察光功率密度与极化时间的关系. 利用图1(c)所示的脉冲序列, 分别在1.0, 2.0, 3.6, 7.6, 15.3, 30.5和45.8 W/cm2的光功率密度下进行测量, 将1态的数值设为参考值1, 各个光功率密度下从0态恢复到1态所需的时间如图2(a)所示, 在光功率密度一定时, 随着激光作用时间增加, 极化率越来越高, 最后趋于稳定, 其函数关系符合e指数增加[27]. 图2(b)给出了在不同光功率密度下达到稳定的极化率时极化时间的变化, 呈现的是e指数衰减趋势, 随着光功率密度越来越小, 从1态极化到0态的速率越慢, 所需要的极化时间越长. 图 2 (a) 不同光功率密度下信号随极化时间的变化; (b) 不同光功率密度下极化时间曲线 Figure2. (a) Variation of signal intensity with polarization time at different laser intensity; (b) polarization time with different laser intensity.
23.2.信息读取时间的测量 -->
3.2.信息读取时间的测量
图3(a)显示了1.0, 2.0, 3.6, 7.6, 15.3, 30.5和45.8 W/cm2的光功率密度下信息读取时间和对比度的关系. 从图3(a)中可以看出, 当光功率密度一定时, 对比度随着信息读取时间先以S型函数增加, 然后再以e指数函数衰减[28]. 在不同光功率密度时, 达到最大对比度时的信息读取时间也不同. 图3(b)给出了不同光功率密度下最佳信息读取时间的变化曲线, 两者关系呈现的是e指数衰减. 图 3 (a) 不同光功率密度下信息读取时间和对比度的关系; (b) 不同光功率密度下最佳信息读取时间曲线 Figure3. (a) Reading time with contrast ratio at different laser intensity; (b) best reading time with different laser intensity.
23.3.激光入射偏振角的测量 -->
3.3.激光入射偏振角的测量
在对NV色心高精度磁传感研究中, 本文还研究了激光入射的偏振角对ODMR的对比度的影响. 图4显示了NV1对比度与激光入射角度的变化关系. 两者关系呈现的是一种正弦函数的变化[29], NV1对比度随着激光入射角的变化产生周期性的改变, 周期为90°, 达到最大对比度时的偏振角度为 (30 + 90n)°. 图 4 对比度随激光入射偏振角的变化曲线 Figure4. Contrast ratio changing with different polarization angle of the laser.