Abstract:When it reaches high energy density state, new features of laser propagation in plasma arises in the contrast to that of research field in classical optics. Such as beam deflection, a laser beam can change its propagation direction while it comes across a transverse plasma flow. On the other hand, employment of all sorts of smoothed laser beams becomes very common in high power laser facilities for high energy density physics experiments. Therefore, on what condition beam deflection comes into play for smoothed beams are necessary to be investigated. This paper presents numerical simulation results for that, which is performed by laser plasma interaction code LAP3D. It is a three dimensional massively parallel code, including a laser paraxial envelope solver and a nonlinear Eulerian hydrodynamics package, and models for filamentation, stimulated Raman scattering and stimulated Brillouin scattering, with beam smoothed by continuous phase plate (CPP), spectral dispersion (SSD), separately. For simplicity in this study, numerical simulations perform in a about 700 μm × 700 μm × 700 μm plasma using isotropic conditions (Te = 3 keV, Ti = 1 keV, n = 0.1 nc) and only include refraction and diffraction effects, namely, with filamentation model excluding scattering models. Simulation employs the CPP and the SSD beam as representatives of spatial and temporal smoothed beams, respectively, and uses an oval like focused spot with extension in the long axis direction about 200 μm in the focus plane propagating through the left boundary into the simulation domain. Based on our previous investigations, we assume that beam deflection of a smoothed beam becomes effective when it satisfies two following conditions as that for a Gaussian beam, namely, suffering filamentation and facing a transverse plasma flow at ion sound speed. Simulation results of LAP3D confirm that both spatial and temporal smoothed beams suffer beam deflection when two above conditions are both satisfied. For the case of CPP smoothed beam, simulation results show that it suffers evident beam deflection under the conditions that it suffers filamentation when its average intensity is larger than that of filamentation threshold, and faces a transverse plasma flow at ion sound speed. For the case of SSD smoothed beam, simulation results show that the beam can avoid beam deflection even if it faces a transverse plasma flow at ion sound speed when filamentation is suppressed as beam bandwidth is much larger than the growth rate of filamentation, otherwise it suffers beam deflection. Keywords:high energy density physics/ beam propagation/ smoothed beam/ beam deflection
其中, ${I_{{\rm{av}}}}$, ${\lambda _0}$, ${n_{\rm e}}$, ${n_{\rm{c}}}$, ${T_{\rm e}}$和F分别为光斑平均光强、激光波长、电子密度、等离子体临界密度、电子温度和光学F数. 当空间束匀滑入射光束平均光强大于${I_{{\rm{av}}}}$时, 空间束匀滑光束在传播过程中会发生成丝现象; 反之, 小于此值时, 空间束匀滑光束不成丝. 根据上文给出的模拟参数, 可知表1中模型3, 4, 5可发生成丝不稳定性情况, LAP3D模拟结果也证实了这一点. 对于束偏折现象的模拟表明, 如果空间束匀滑光束发生了成丝现象, 则引入声速量级的横向流后, 光束会发生显著的束偏折现象; 反之, 如果光束没有发生成丝现象, 则不会出现束偏折现象. 如图1所示, 模型2中没有发生激光成丝现象, 加横向流时对应的模拟结果中光束传播方向没有变化; 而模型5中发生了激光成丝现象, 加横向流后对应模拟结果显示光束传播方向随传播距离增加明显偏向等离子体流方向, 即发生了束偏折现象, 这些模拟结果与物理预期相同. 此外从空间束匀滑光束入射面和出射面内光斑电场幅值空间分布情况也可判断光束是否发生了明显的束偏折现象. 如图2所示, 对比Φ200模型5加横向流时模拟结果给出的电场幅值在入射面和出射面内的分布, 可以发现在出射面内光斑整体偏向等离子体流的方向, 表明发生了束偏折现象. 图 2 对比空间束匀滑光束发生束偏折时Φ200模型5加横向流的入射面和出射面内光斑电场幅值分布 (a)入射面; (b)出射面. 图中横纵坐标对应模拟空间坐标x和y, 其量纲为激光波长. 横向流速等于离子声速 Figure2. Comparison of spatial distribution of laser electric field between laser entrance and exit planes as beam deflection presents: (a) Laser entrance plane; (b) laser exit plane. x and y axes of two figures corresponding to x and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length. The transverse flow speed equals ion sound speed.
其中, $\delta $为调制深度, 模拟中取$\delta = 12$, ${f_{{\rm{SSD}}}}$为调制频率. 由本文算例所取的SSD光束调制频率可知, 当SSD光束调制频率${f_{{\rm{SSD}}}}$为${10^{ - 3}}{\rm{ }}{\omega _0}$和${10^{ - 4}}{\rm{ }}{\omega _0}$时, SSD光束带宽均远大于算例对应的成丝最大增长率${\gamma _{\max }} \approx 2.56 \times {10^{ - 4}}{\rm{ }}{\omega _0}$. 但当SSD光束调制频率${f_{{\rm{SSD}}}}$为${10^{ - 5}}{\rm{ }}{\omega _0}$时, SSD光束带宽小于成丝最大增长率. 根据上面的理论分析, 可以预期在取${10^{ - 3}}{\rm{ }}{\omega _0}$和${10^{ - 4}}{\rm{ }}{\omega _0}$这两种调制频率时, 时间束匀滑光束可以抑制成丝不稳定性; 相应束偏折现象也不会出现. 当SSD光束调制频率为${10^{ - 5}}{\rm{ }}{\omega _0}$时, 可发生成丝不稳定性; 当同时存在声速量级横向流时会出现显著的束偏折现象. 下面给出的模拟结果也证实了这些判断. 图3给出了当SSD光束调制频率为${10^{ - 3}}{\rm{ }}{\omega _0}$且没有横向流时的传播过程的模拟结果. 模拟发现, 在给定的传播距离内(约2000个激光波长), 与空间束匀滑光束成直线传播相比, SSD光束在空间传播中表现出明显的“扫描”行为, 这和已有模拟结果[16]和理论预期相符. 图 3 调制频率为${10^{ - 3}}{\omega _0}$的时间束匀滑光束传播行为 (a)对应11000激光周期; (b)对应13750激光周期. 图中横纵坐标对应模拟空间坐标z和y, 其量纲为激光波长 Figure3. Propagation of SSD beam at modulation frequency of 10–3ω0: (a) Corresponding simulation result at 11000 th laser periods; (b) corresponding simulation result at 13750 th laser periods. x and y axes of two figures corresponding to z and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length.
由上一节给出的模拟结果可知在给定的等离子体条件下, 本节算例中的SSD光束强度远大于成丝阈值, 但图3中显示SSD光束并没有出现束发散现象. 这表明当SSD光束取调制频率为${10^{ - 3}} {\omega _0}$时, 抑制了成丝不稳定性. 由此可以预期, 当加入等离子体横向流时, 也不会明显发生束偏折现象, 模拟结果证实了这一点(图4). 图 4 有横向离子声速量级等离子体流时调制频率为${10^{ - 3}}{\omega _0}$的时间束匀滑光束的传播行为 (a)对应11000激光周期; (b)对应13750激光周期. 图中横纵坐标对应模拟空间坐标z和y, 其量纲为激光波长. 横向流速等于离子声速 Figure4. Propagation of SSD beam with transverse flow at modulation frequency of 10–3 ω0: (a) Corresponding simulation result at 11000 th laser periods; (b) corresponding simulation result at 13750th laser periods. x and y axes of two figures corresponding to z and y axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length. The transverse flow speed equals ion sound speed.
除调制频率为${10^{ - 3}} {\omega _0}$的情况, 还模拟了SSD光束调制频率为${10^{ - 4}}{\omega _0}$时, 无横向流和有横向流时的激光传播情况. 模拟结果表明, 无横向流时算例没有出现激光成丝现象, 相应模拟流速在离子声速量级的横向流时的算例如图5所示, 也没有出现束偏折现象. 当调制频率为${10^{ - 5}} {\omega _0}$时, 模拟结果表明: 无横向流时, SSD光束会出现成丝现象; 有横向流时, 光束会出现束偏折现象. 由于其调制频率较低, 所以在本文所选的模拟空间尺度内, SSD光束传播行为类似于前一节的空间束匀滑激光, 如束发散时光场空间分布的模拟结果与图1(b)类似, 故这里略去. 图 5 对比时间束匀滑光束在调制频率为${10^{ - 4}}{\rm{ }}{\omega _0}$时的光束传播行为 (a)等离子体横向流速为零; (b)等离子体横向流速等于离子声速. 图中横纵坐标对应模拟空间坐标y和z, 其量纲为激光波长 Figure5. Propagation of SSD beam at modulation frequency of 10–4ω0: (a) No transverse flow; (b) the transverse flow speed equals ion sound speed. x and y axes of two figures corresponding to y and z axes of simulation coordinates, respectively. The spatial scale is in unit of laser wave length.