1.Graduate school of China Academy Of Engineering Physics, Beijing 100088, China 2.Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11675021) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11805018)
Received Date:04 November 2019
Accepted Date:28 November 2019
Published Online:05 February 2020
Abstract:The angle-cut collimator plays an important role in high-energy proton radiography. By using the collimator, the image contrast can be improved, and the material diagnosis and density reconstruction can be realized through secondary imaging. As all these techniques depend on the flux value, it is of great significance to reduce the error of the detected flux value. The ideal collimator is a much thin surface, but thick enough to block protons outside the collimation region. It is designed by stretching the aperture of the collimation plane. The shape is cylindrical, and it will increase the error of the flux value with the angle truncation. The initial bunch is defined and the phase diagram of the bunch within the angle-cut is ideal in the theoretical model. The equation of designing the collimator is given by theoretical analysis. It is given by the transfer matrix, the radius of the object and the angle-cut. The pore structure is oval-shaped by calculating and simulating. The proton imaging system of 1.6 GeV is established by Geant4 program, and the detector is ideal. The round copper plate and the concentric spheres are chosen as objects respectively. The parameters of the designed collimator is given by this method. The ideal collimator, tensile collimator and designed collimator are used in simulation, the radius of object is 5 cm and the angle-cut is 2 mrad and 3.5 mrad. The results show that when using the ideal and the designed angle-cut collimator, the flux distributions are in good agreement, while when using the tensile collimator, the result is quite different from that obtained by using the ideal collimator. Therefore, the collimator designed by this method can effectively reduce the error of the detected flux value. Keywords:high-energy proton radiography/ angle-cut collimator/ density reconstruction/ Geant4 code
全文HTML
--> --> -->
2.角度准直器模型通过数值模拟可以看出截断角以内质子束团的形状在放置角度准直器的漂移空间(准直空间)内是沿漂移位置变化的椭圆, 如图2所示. 如果准直器孔径的形状与该质子束团的形状相匹配, 此时准直器的厚度将不影响截断角内质子束团的通量, 因此, 设计角度准直器即为求该截断角内质子束团在准直空间的半轴(边界线)分布. 做以下假设: 1) 恰好离开客体的质子束团近似为圆(初始束团); 2) 一定截断角以内的初始束团(目标束团)相图为理想相图. 图 2 一定截断角以内的质子束团在通过准直空间时的形状变化 (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m Figure2. Shape changed of proton bunch within certain angle-cuts as it passes through the collimation space: (a) z = 0 m; (b) z = 0.6 m; (c) z = 1.2 m; (d) z = 1.8 m; (e) z = 2.4 m.
表11.6 GeV质子成像系统参数 Table1.Parameters of the proton radiography system of 1.6 GeV.
图 3 质子成像系统参数示意图 Figure3. Diagram of parameters of proton radiography system.
-->
3.1.数值计算
图4是截断角为2 mrad、客体尺寸为5 cm时的目标束团边界线(半轴分布). 中间位置即为准直平面, 此时x和y方向的半轴相等, 即束团形状在x-y平面为圆形, 而其他位置均不相等, 此时束团形状为椭圆形, 因此可以看出目标束团在准直空间形成的形状是一系列变化的椭圆. 选择一段包含准直平面在内的边界线可以作为准直器的孔径参数, 本文以z = 20 cm (前端)到z = 120 cm (后端)之间的部分作为准直器, 即准直器厚度为1 m. 图 4 截断角为2 mrad、客体尺寸为5 cm时的目标束团边界线 Figure4. Boundary lines of the target bunch when the angle-cut is 2 mrad and the object size is 5 cm.
图5给出了客体尺寸为5 cm、截断角变化时的孔径值曲线, 可以看出孔径值与截断角大小成正比. 其中, 图5(a)是前端口孔径值的变化曲线, 可以得出x和y方向的半轴不相等, 所以端口形状为椭圆形; 图5(b)是后端口孔径值的变化曲线, 可以得出端口形状为圆形, 此时准直器孔径的整体结构是椭圆台状的. 图6是客体半径为5 cm, 截断角为2 mrad时的准直器形状. 图 5 端口处的孔径值随截断角的变化 (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$ Figure5. Aperture size varies with the angle-cut at the ports: (a) $z = 20\;{\rm{cm}}$; (b) $z = 120\;{\rm{cm}}$.
图 6 准直器孔径的形状 (a) x-y平面; (b) y-z平面 Figure6. Shape of aperture of the collimator: (a) x-y plane; (b) y-z plane.
23.2.蒙特卡罗模拟 -->
3.2.蒙特卡罗模拟
利用Geant4[21,22]软件, 设计了1.6 GeV的质子成像系统. 该系统中探测器使用薄层介质板, 质子束流为单能质子. 模拟中分别使用理想型、拉伸型和利用本文模型设计的准直器称之为设计型, 并对比通过客体后的通量分布. 客体结构如图7所示, 图7(a)是厚度为1 mm、半径为5 cm的铜板. 图7(b)由一组同心球层组成, 中心区是空区, 空球半径为1 cm, 第二层和第三层分别是锂和钠, 球半径分别是4 cm和5 cm. 准直器分别以客体尺寸为5 cm, 截断角为2和3.5 mrad设计, 表2列出三类准直器的孔径参数.
截断角/mrad
准直器类型
前端/cm
后端/cm
厚度/m
外半径/m
材料
x
y
x
y
2
理想型
—
0.61
10–7
3
Al
拉伸型
0.61
0.61
1 & 0.4
3
W
设计型
2.04
2.46
0.61
1
3
W
3.5
理想型
—
1.07
10–7
3
Al
拉伸型
1.07
1.07
1 & 0.4
3
W
设计型
2.34
3.08
1.07
1
3
W
表2准直器的孔径参数 Table2.Aperture parameters of the collimator.
图 7 客体示意图 (a)铜板; (b)同心球体 Figure7. Diagram of the object: (a) The round copper plate; (b) the concentric spheres.
图 9 通过同心球的通量分布 (a)截断角为2 mrad; (b)截断角为3.5 mrad Figure9. Flux distribution after passing the concentric spheres: (a) Angle-cut of 2 mrad; (b) angle-cut of 3.5 mrad.