Fund Project:Project supported by the Strategic Priority Research Program of the Chinese Academy of Science (Grant No. XDB22030101)
Received Date:01 July 2019
Accepted Date:21 October 2019
Published Online:05 February 2020
Abstract:Bluff bodies possess many engineering applications. The flow past a bluff body is a classical issue in fluid mechanics. In most of previous studies, the role of streamwise vorticity is mainly stressed in three-dimensional wake flow, such as in the physical origin of streamwise vortices in the mode A, and the complete suppression of alternatively shedding Kármán vortices under the effect of geometric disturbances introduced in the bluff body. However, through the careful investigation of two examples above, the vertical vorticity actually plays a key role. Furthermore, there is a physical phenomenon, special relationship among dominant vorticity components with specific signs or vorticity sign law, occurring in the wake of a bluff body with geometric disturbances. In the present paper, through direct numerical simulations at low Reynolds numbers, such a phenomenon is summarized in two kinds of cylinders, i.e. basic straight cylinder and geometrically disturbed cylinder. Two typical cross-sections are examined, including the circular and square sections. Three sub-regimes (front surfaces, shear layers and wake) are mainly investigated. The numerical results show that two generalized vorticity sign laws exist in the wake of a bluff body. For example, the first sign law shows that the sign of streamwise vorticity is always the same as that of vertical vorticity in the upper shear layer, but opposite in the lower shear layer. The second sign law shows that the sign combination of three components of vorticity is always negative in the shear layers and wake. As for the physical mechanism of sign laws appearing in the present two kinds of cylinders, the main difference between the small perturbance which induces the natural three-dimensional instability and the geometric disturbance leads to the evolution of generated surface vorticity under the effect of inertial forces. These generalized sign laws have been already verified theoretically in the previous work recently. Moreover, sign laws also indicate that the different vortex-shedding patterns in the wake of different bluff bodies are inherently identical from the point of vorticity sign. Considering the physical fact that the wall is the only source of new vorticity in the present vortex dynamics, the theoretical results also indicate that the Π-type vortex with specific groups of vorticity components is a basic vortex pattern generated on the walls, once the three-dimensional wake first appears in the wake at low Reynolds number. Keywords:vorticity/ sign law/ bluff body/ wake
全文HTML
--> --> --> -->
2.1.钝体几何结构及参数
为了更好地对比和总结各类钝体三维尾迹中涡及其涡分量的符号关系, 典型地, 将钝体结构分成两类, 如图1所示. 一类是基本的直柱体, 主要特征是: 不仅柱体轴向不同位置处的横截面沿着柱体轴向始终保持不变, 而且柱体轴线保持直线. 另一类就是上述直柱体中当受到几何扰动后发生形状变化的柱体, 其特征主要是: 或者柱体轴向位置处的横截面沿着柱体轴向逐渐变化, 或者柱体轴线不再是保持直线, 而是呈现弯曲型变化的. 图 1 各种几何结构形式的钝体绕流示意图 (a)圆形截面的直圆柱; (b)方形截面的直方柱; (c)圆形截面的谐波柱; (d)圆形截面的圆锥柱; (e)方形截面的全弯曲方柱 Figure1. Schematics of a flow past a bluff body with different geometry: (a) The straight cylinder with circular cross-section; (b) the straight cylinder with square cross-section; (c) the harmonic cylinder with circular cross-section; (d) the conic cylinder with circular cross-section; (e) the wholly wavy cylinder with square cross-section.
表1不同几何结构的钝体绕流所采用的计算域及近壁网格尺度汇总 Table1.Summary of computational domain and the nearest-wall grid used in a flow past a bluff body with different geometry.
首先来看直圆柱的三维尾迹. 特别地, 选取$Re = 200$时出现的纯模式A ($\lambda = 4$)和$Re = 300$时出现的纯模式B ($\lambda = 1$), 分别如图2和图3所示. 根据柱体迎风面、剪切层及尾迹中占优涡分量的特定符号来看, 存在如下的两种关系, 分别为 图 2Re = 200时直圆柱尾迹中各个涡分量等值面以及柱体表面各个涡分量等值线(其中红色和蓝色分别表示正值和负值, 注意等值面图中采用半透明灰色面来表示圆柱体, 且流动从左至右) (a) ${\omega _x} = \pm 0.4$等值面; (b) ${\omega _y} = \pm 0.2$等值面; (c) ${\omega _z} = \pm 0.8$等值面; (d) ${\omega _x}$等值线; (e) ${\omega _y}$等值线; (f) ${\omega _z}$等值线 Figure2. At Re = 200, iso-surfaces of ${{\omega}}$ in the wake of a straight circular cylinder, and contours of ${{\omega}}$ on cylinder surfaces, where red and blue colors denote positive and negative values, respectively: (a) Iso-surfaces of ${\omega _x} = \pm 0.4$; (b) iso-surfaces of ${\omega _y} = \pm 0.2$; (c) iso-surfaces of ${\omega _z} = \pm 0.8$; (d) contours of ${\omega _x}$; (e) contours of ${\omega _y}$; (f) contours of ${\omega _z}$. Note that the cylinder is denoted by the grey translucent surface in iso-surfaces and the flow is from left to right.
图 3Re = 300时直圆柱尾迹中各个涡分量等值面以及柱体表面各个涡分量等值线(其中红色和蓝色分别表示正值和负值, 以及等值线图中的绿色则表示$\left| {{\omega _x}} \right|$或$\left| {{\omega _y}} \right|$小于0.001; 注意, 等值面图中采用半透明灰色面来表示圆柱体, 且流动从左至右) (a) ${\omega _x} = $$ \pm 0.2$等值面; (b) ${\omega _y} = \pm 0.2$等值面; (c) ${\omega _z} = \pm 1$等值面; (d) ${\omega _x}$等值线; (e) ${\omega _y}$等值线; (f) ${\omega _z}$等值线 Figure3. At Re = 300, iso-surfaces of ${{\omega}}$ in the wake of a straight circular cylinder, and contours of ${{\omega}}$ on cylinder surfaces, where red and blue colors denote positive and negative values, respectively, and green color in contours denotes $\left| {{\omega _x}} \right|$ or $\left| {{\omega _y}} \right|$ less than 0.001: (a) Iso-surfaces of ${\omega _x} = \pm 0.2$; (b) iso-surfaces of ${\omega _y} = \pm 0.2$; (c) iso-surfaces of ${\omega _z} = \pm 1$; (d) contours of ${\omega _x}$; (e) contours of ${\omega _y}$; (f) contours of ${\omega _z}$. Note that the cylinder is denoted by the grey translucent surface in iso-surfaces and the flow is from left to right.
需要说明的是, 这两个关系式中, $y < 0$指的是尾迹中心平面($y = 0$)以下, 如柱体表面下半部分, 下剪切层和尾迹中从下剪切层脱落的涡流(此时${\omega _z} > 0$); 对应地, $y > 0$指的是尾迹中心平面($y = 0$)上方, 如柱体表面上半部分, 上剪切层和尾迹中从上剪切层脱落的涡流(此时${\omega _z} < 0$). 由此, 直圆柱绕流流场中出现的这种具有特定涡量符号组合关系, 称之为符号律; 其中(5)式称为流向涡量和垂向涡量的第一符号律; (6)式则称为3个涡分量的第二符号律, 或尾迹涡量负号律. 举例来说, 如图2(a)和图2(b)中, 靠近结构一端, 上、下剪切层中占优的流向涡量分别为负号和正号; 而此时占优的垂向涡量, 无论上还是下剪切层中, 均为负号; 流向涡量和垂向涡量均随着展向涡的交替脱落而脱落; 在此过程中, 可以看出, 上剪切层中, 流向涡量和垂向涡量符号相同, 而下剪切层中则相反; 考虑到图2(c)中展向涡量在上、下剪切层中分别为负号和正号, 从而得到3个涡分量在剪切层以及随后的尾迹中的符号组合恒为负号. 然后, 考察直方柱时的三维尾迹. 同样地, 选取Re = 180时出现的纯模式A $(\lambda = 5.6)$和Re = 250时纯模式B $(\lambda = 1.2)$的涡量场, 分别如图4和图5所示. 如前所述方形截面的特殊性, 这里只关注剪切层和尾迹两个流动区域. 有趣的是, 根据这两个区域内占优的涡分量符号分布特征, 同样能得到(3)式和(4)式. 图 4Re = 180时直方柱尾迹中 (a) ${\omega _x} = \pm 0.8$(黄/绿)和${\omega _z} = \pm 1$ (红/蓝)等值面图, 其中背景为$z = 0$处的${\omega _z}$等值线色图; (b) $z = {\lambda / 4}$处${\omega _x}$的等值线色图; (c) $z = {\lambda / 4}$处${\omega _y}$的等值线色图; 图中红色和蓝色, 以及${\omega _z}$等值线的实线和虚线分别表示正值和负值 Figure4. In the wake of a square cylinder at Re = 180: (a) Iso-surfaces of ${\omega _x} = \pm 0.8$ (yellow/green) and ${\omega _z} = \pm 1$ (red/blue), where the background is colorful contours of ${\omega _z}$ at $z = 0$; (b) colorful contours of ${\omega _x}$ at $z = {\lambda / 4}$; (c) colorful contours of ${\omega _y}$ at $z = {\lambda / 4}$. In Fig. 4, red and blue colors, as well as solid and dashed lines in contours of ${\omega _z}$, denote positive and negative values, respectively.
图 5Re = 250时直方柱尾迹中 (a) ${\omega _x} = \pm 0.8$(黄/绿)和${\omega _z} = \pm 1$ (红/蓝)等值面图, 其中背景为$z = 0$处的${\omega _z}$等值线色图; (b) $z = {\lambda / 4}$处${\omega _x}$的等值线色图; (c) $z = {\lambda / 4}$处${\omega _y}$的等值线色图, 其中红色和蓝色, 以及${\omega _z}$等值线的实线和虚线分别表示正值和负值 Figure5. In the wake of a square cylinder at Re = 250: (a) Iso-surfaces of ${\omega _x} = \pm 0.8$ (yellow/green) and ${\omega _z} = \pm 1$ (red/blue), where the background is colorful contours of ${\omega _z}$ at $z = 0$; (b) colorful contours of ${\omega _x}$ at $z = {\lambda / 4}$; (c) colorful contours of ${\omega _y}$ at $z = {\lambda / 4}$. In Fig. 5, red and blue colors, as well as solid and dashed lines in contours of ${\omega _z}$, denote positive and negative values, respectively.
23.2.几何扰动柱体的三维尾迹 -->
3.2.几何扰动柱体的三维尾迹
由于几何扰动柱体尾迹中存在多种涡脱落模态, 这里主要选择两种类型进行展示. 一种是类似于上述直柱体中模式A出现的漩涡交替脱落状态; 另一种为脱落涡完全受到抑制的情况. 首先来看圆形截面的谐波柱尾迹. 此时, Re = 100和扰动强度为${W / \lambda } = 0.1$, 选取扰动波长$\lambda = 8$和4时的涡模态, 分别如图6和图7所示. 这时, 根据占优涡分量的空间分布特征来看, 得到如下两种情况的涡量符号关系: 图 6Re = 100, ${W / \lambda } = 0.1$且$\lambda = 8$时谐波柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$处${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$ Figure6. At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 8$, iso-surfaces of three components of vorticity in the wake of a harmonic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 6, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.
图 7Re = 100, ${W / \lambda } = 0.1$且$\lambda = 4$时谐波柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$处${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$ Figure7. At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 4$, iso-surfaces of three components of vorticity in the wake of a harmonic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 7, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.
2)剪切层下游之后和脱落尾涡的尾迹中, 此时可以看出, 涡量符号关系仍然满足直柱体尾迹中的(5)式和(6)式. 类似地, 在圆锥柱的三维尾迹中, 当Re = 100时, 选取扰动强度${W / \lambda } = 0.1$且扰动波长$\lambda = 8$, 和扰动强度${W / \lambda } = 0.2$且$\lambda = 4$时两种涡模态, 分别如图8和图9所示. 依据特定流动区域内占优涡量的符号分布, 可以得到和谐波柱相同的结论. 图 8Re = 100, ${W / \lambda } = 0.1$且$\lambda = 8$时圆锥柱尾迹中三个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$处${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$ Figure8. At Re = 100, ${W / \lambda } = 0.1$ and $\lambda = 8$, iso-surfaces of three components of vorticity in the wake of a conic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 8, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.
图 9Re = 100, ${W / \lambda } = 0.2$且$\lambda = 4$时圆锥柱尾迹中3个涡分量等值面图(其中红色和蓝色分别为正值和负值, 背景为$z = 0$处${\omega _z}$的等值线色图) (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$ Figure9. At Re = 100, ${W / \lambda } = 0.2$ and $\lambda = 4$, iso-surfaces of three components of vorticity in the wake of a conic cylinder: (a) ${\omega _x}$; (b) ${\omega _y}$; (c) ${\omega _z}$. In Fig. 9, red and blue colors denote positive and negative values, respectively, and the background is the colorful contour of ${\omega _z}$ at $z = 0$.