Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61771237), the Project of the Key Laboratory of Advanced Electromagnetic Wave Control Technology in Jiangsu Province, and Construction Project of Superior Discipline in Universities in Jiangsu Province, China
Received Date:14 August 2019
Accepted Date:31 October 2019
Available Online:07 December 2019
Published Online:05 January 2020
Abstract:Under the action of static bias magnetic field, the magnetized ferrite has a permeability tensor which can be adjusted by the applied magnetic field. In this paper, the absorption properties of bulk gyromagnetic ferrites under different magnetized conditions are studied and the great potential of gyromagnetic ferrite in achieving low frequency electromagnetic wave absorption is demonstrated. Full wave electromagnetic simulations are performed based on the finite element method (FEM). A floquet port is adopted at the top boundary of the unit cell to simulate a normally incident plane wave. The unit cell boundary conditions are used in the x-y plane to simulate a periodic structure. Orthogonality magnetization in plane is utilized to solve the polarization selectivity in the condition of transverse magnetic field. The influence on absorption capacity of discrete ferrite array structure and the coupling effect of ferrite elements with different sizes are also studied in consideration of the size effect. The simulation results show that a thin bulk gyromagnetic ferrite layer whose thickness is only 4 mm can possess frequency as low as 0.48 GHz and reflectivity below –10 dB. Gyromagnetic ferrite presents different absorption properties under longitudinal magnetization and transversal magnetization, and different polarization directions in transversal magnetization as well. When longitudinal bias magnetic field H0 = 200 Oe, the bandwidth of the reflectivity below –10 dB ranges from 0.48 to 1.84 GHz. The resonant absorption frequency can be regulated by adjusting bias magnetic field and the size of ferrite element. In general, a large bias magnetic field leads to a high resonant frequency due to the ferromagnetic resonance frequency positively associated with the applied magnetic field, but a ferrite array consisting of larger size elements provides a lower resonant frequency for the size resonance negatively associated with the size. By introducing the coupling between elements with different sizes, the reflection bandwidth below –10 dB can be effectively extended to above 80% of the sum of the bandwidth possessed by single unit cell, especially 105.7% under transversal bias magnetic field 700 Oe. And the broadening effect is effective in both longitudinal and transverse magnetized state but it will be weaker when the two absorption peaks are closer. To further understand the absorption mechanism of the two-element absorber, the distribution of the electric field, magnetic field and power loss density are examined. The results prove that the two peaks at the lower frequency exactly originates from $ \Delta R = 0$ and the higher frequency originates from $ \Delta R = 4$, and therefore the widened absorption is contributed by the coupled multiple resonances provided by the elements with different sizes. Keywords:gyromagnetic ferrite/ low frequency electromagnetic wave absorption/ tunable absorption
全文HTML
--> --> -->
2.旋磁铁氧体的吸波特性首先考虑大块铁氧体材料和金属背板组成的吸波结构, 铁氧体厚度$h = 4 \;{\rm{mm}}$, 如图1(a)所示. 本文选用的锶铁氧体的电磁参数如下: 相对介电常数${\varepsilon _{\rm{r}}} = {\rm{22 }}$(在研究频段基本保持不变), 损耗角正切$\tan \delta = {\rm{0}}.{\rm{01}}$, 饱和磁化强度$4{\text{π}}{M_{\rm{s}}} = 4000 \;{\rm{G}}$, 谐振线宽$\Delta H = 2000 \;{\rm Oe}$ (1 Oe = 79.6 A/m)[26]. 当外加偏置磁场为H0时, 根据Landau-Lifshitz模型, 旋磁铁氧体的相对磁导率为[27]: 图 1 大块铁氧体模型示意图和在不同磁化方式、磁场强度、极化方向下对电磁波的反射率 (a)模型示意图; (b)纵向磁化下不同磁场强度对反射率的影响; (c)横向磁化下不同极化方向的反射率; (d)不同磁化方式对反射率的影响 Figure1. The schematic model and the reflectivity of bulk ferrite under different magnetized methods, magnetic field intensities and polarized directions: (a) The schematic model; (b) the influence of different magnetic field intensities under longitudinal magnetization; (c) different polarized directions under transversal magnetization; (d) the influence of different magnetized methods.
横向磁化存在极化选择性的问题, 可以考虑采用面内磁化方向正交的方式来解决. 将图1(a)中的大块铁氧体变成由图2(a)所示的六边形基元平铺而成, 基元边长R = 20 mm. 平铺的基元以六角点阵结构排列, 晶格常数${a_0} = \sqrt 3 R$. 图中A, B区域分别表示沿y方向磁化和沿x方向磁化的铁氧体基元. 图 2 基元结构和横向磁化时面内正交磁化作用下铁氧体的反射率 (a)基元结构(A, B分别表示沿y向磁化和x向磁化的铁氧体基元); (b) TE极化; (c) TM极化; (d) TE极化时尺寸效应; (e) TM极化时尺寸效应 Figure2. The unit cell and the reflectivity of transversally orthogonally magnetized ferrite: (a) The unit cell(A and B present the ferrite magnetized along y and x directions, respectively); the reflectivity of (b) TE polarization and (c) TM polarization; the size effect of (d) TE polarization and (e) TM polarization.
研究结构如图3(a)所示, 铁氧体基元边长比周期单元边长R = 20 mm缩小$\Delta R$, 铁氧体材料的占空比会相应减小, 材料的颜色索引同图1, 厚度固定在4 mm. 我们计算了$\Delta R = 2$和$\Delta R = 4$的情况, 晶格常数${a_0} = 20\sqrt 3 \;{\rm{ mm}}$. 图 3 不同基元大小的铁氧体阵列及其在不同磁化状态下的反射性能 (a)离散的铁氧体阵列; (b)纵向磁化下$\Delta R$的影响; (c)横向磁化TE极化下$\Delta R$的影响; (d)横向磁化TM极化下$\Delta R$的影响 Figure3. Reflection of ferrites array with different element sizes in different magnetized conditions: (a) The discrete array; the influence of $\Delta R$ in (b) longitudinal magnetization; (c) transversal magnetization with TE polarization and (d) transverse magnetization with TM polarization.
拓展吸收带宽的有效方法是采用多谐振. 之前有工作研究了用不同厚度的阵列基底来产生$(2 n + 1)\lambda /4$多谐振峰, 从而达到吸收带宽的拓展[29]. 图3的计算结果表明: 随着基元尺寸的变化(改变$\Delta R$), 旋磁铁氧体共振吸收频率会有所变化. 因此我们可以通过将两种不同尺寸的基元组合, 产生多谐振峰并利用它们之间的耦合作用来拓展带宽. 结构设计如图4(a)所示, 依旧采用六角点阵, 材料的颜色索引同图1. 为了保证每种基元原本的吸收性能, 我们采取一个正六角形超胞(该超胞由七个同种基元构成, 见图4(a)左)以保护同种基元之间的相互作用. 由于七个正六边形基元无法镶嵌满一个超胞, 为了保证吸收强度, 将六个空角处填满了铁氧体材料. 当应用偏置磁场时, 有限尺寸的铁氧体材料会产生退磁效应, 退磁系数与铁氧体基元的长径比R/h相关. 考虑到这一点, 当基元尺寸R变化时, 基元的高度h会相应变化以使R/h保持不变从而保证阵列中不同尺寸的铁氧体基元内部的磁场相等. 并且由(4)式可知h的变化也会带来吸收频率的变化, 图4单种基元的反射率曲线是基于相应的h计算的. 同前文一致($R/h = 20/4$, $\Delta R = 0$时R = 20 mm), 长径比固定为5. 数字1, 2用以区分构成超胞使用的基元不同($\Delta R$不同). 图 4 结构示意图和不同尺寸基元组合的性能 (a)结构示意图(左部分表示超胞1(2)的细节); (b)纵向磁化200 Oe, $\Delta R = 0$和$\Delta R = 4$组合; (c)纵向磁化700 Oe, $\Delta R = 0$和$\Delta R = 4$组合; (d)纵向磁化700 Oe, $\Delta R = 0$和$\Delta R = 2$组合; (e)横向磁化200 Oe, $\Delta R = 0$和$\Delta R = 4$组合; (f)横向磁化700 Oe, $\Delta R = 0$和$\Delta R = 4$组合; (g)横向磁化700 Oe, $\Delta R = 0$和$\Delta R = 2$组合 Figure4. The schematic and the properties of elements combinations with different sizes: (a) Schematic of the array combined by different elements(The left shows the details of supercell1(2)); the combination of $\Delta R = 0$ and $\Delta R = 4$ under longitudinal magnetization (b) 200 Oe and (c) 700 Oe; (d) the combination of $\Delta R = 0$ and $\Delta R = 2$ under longitudinal magnetization 700 Oe; the combination of $\Delta R = 0$ and $\Delta R = 4$ under transversal magnetization (e) 200 Oe and (f) 700 Oe; (g) the combination of $\Delta R = 0$ and $\Delta R = 2$ under transversal magnetization 700 Oe.
图4(b)给出了纵向磁化下$\Delta R = 0$与$\Delta R = 4$两者组合的计算结果, 偏置磁场大小为200 Oe. 由于$\Delta R = 4$时, 反射率勉强能低于–10 dB(见图4(b)蓝色虚线), 因此当两种基元组合后(图4(b)黑色实线), 虽能明显地看到两个吸收峰的共同作用, 但是当频率靠近$\Delta R = 4$的吸收峰时, 反射率会略高于–10 dB. 为了使其降低到–10 dB以下, 可以加大磁场, 见图4(c). 当偏置磁场为700 Oe时, 其–10 dB带宽为1.77 GHz (1.59—3.36 GHz, 图4(c)黑色实线)远大于任一基元单独作用的带宽, 是单种基元作用带宽之和的83.5% ($\Delta R = 0$带宽为1.11 GHz, $\Delta R = 4$带宽为1.01 GHz, 两者之和为2.12 GHz, 见图4(c)红色虚线和蓝色虚线). 图4(d)研究了纵向磁化700 Oe时$\Delta R = 0$与$\Delta R = 2$的组合, 对比图4(c), 此时两者之间的共振吸收峰相距较近, 因此扩展带宽的效果要弱于$\Delta R = 0$与$\Delta R = 4$的组合. 图4(e)—图4(g)给出的是横向磁化的情况, 当应用弱偏置场200 Oe的时候, –10 dB带宽为1.69 GHz (0.81—2.50 GHz, 图4(e)黑色实线)是单种基元作用带宽之和的87.6% ($\Delta R = 0$带宽为0.91 GHz, $\Delta R = 4$带宽为1.02 GHz, 两者之和为1.93 GHz, 见图4(e)红色虚线和蓝色虚线). 当应用强偏置场700 Oe时, –10 dB带宽为1.67 GHz (1.41—3.08 GHz, 图4(f)黑色实线)是单种基元作用带宽之和的105.7% ($\Delta R = 0$带宽为0.63 GHz, $\Delta R = 4$带宽为0.95 GHz, 两者之和为1.58 GHz, 见图4(f)红色虚线和蓝色虚线). 如图4(g)所示, 同纵向磁化时一样, 由于两吸收峰靠得太近, 耦合作用很微弱, 横向磁化时$\Delta R = 0$与$\Delta R = 2$的组合对吸收带宽的扩展也会弱于$\Delta R = 0$与$\Delta R = 4$的组合. 为了探究两种基元组合后吸波结构的吸收机理, 我们研究了吸波结构在共振吸收频率处的电磁场分布与能量损耗密度分布状态. 图5给出了最具代表性的$\Delta R = 0$与$\Delta R = 4$组合阵列在y = 0平面内的计算结果. 图5(a)和图5(b)对应于图4(c)的纵向磁化状态. 图5(a)绘制了低频吸收峰f = 1.95 GHz的场图, 磁场集中分布在$\Delta R = 0$超胞的铁氧体基元的中下部位, 对比分析电场、磁场和能量损耗密度可以发现能量损耗密度和磁场分布具有高度一致性, 说明在低频吸收峰的能量损耗主要来自于$\Delta R = 0$的铁氧体基元的磁共振. 图5(b)在高频吸收峰f = 3.05 GHz时, 磁场和能量损耗密度主要集中在$\Delta R = 4$超胞内离散的铁氧体. 图5(c)和图5(d)对应于图4(f)的横向磁化状态, 同纵向磁化一样, 横向磁化低频吸收峰f = 1.65 GHz的能量损耗密度主要分布在$\Delta R = 0$区域, 高频f = 2.25 GHz的能量损耗密度主要分布在$\Delta R = 4$区域. 略不同于纵向磁化的是, 集中分布的磁场会更多地耦合到另一种基元, 例如图5(d)集中分布在$\Delta R = 4$的磁场, 在邻近它的$\Delta R = 0$的两端区域也有较强的值. 能量损耗密度在x-y截面(正视图)的分布情况也在图6中给出(图6(a)和图6(b)对应纵向磁化, 图6(c)和图6(d)对应横向磁化). 结果显示不论是纵向磁化还是横向磁化, 低频吸收峰的能量损耗主要来源于$\Delta R = 0$的铁氧体基元, 高频吸收峰的能量损耗主要来源于$\Delta R = 4$的离散铁氧体基元. 可见, 两种不同尺寸的基元组合后, 保留了原先单种基元各自的磁共振, 因此形成了两个吸收峰, 两个相距较近的吸收峰之间相互耦合(见图4(b)—图4(g))从而实现了吸收带宽的拓展. 图 5 由$\Delta R = 0$与$\Delta R = 4$两种阵列组合而成的吸波结构在y = 0平面内的电场, 磁场, 能量损耗密度分布 (a), (b)分别为工作频率1.95和3.05 GHz, 纵向磁化场700 Oe时的情形; (c), (d)分别是工作频率为1.65和2.25 GHz, 横向磁化场700 Oe时的情形 Figure5. Distributions of electric field, magnetic field and power loss density in the y = 0 plane of the absorption structure combined by $\Delta R = 0$ and $\Delta R = 4$ at two absorption peaks: (a) 1.95 GHz and (b) 3.05 GHz of longitudinal magnetization 700 Oe; (c) 1.65 GHz and (d) 2.25 GHz of transversal magnetization 700 Oe.
图 6 能量损耗密度在x-y截面(正视图)的分布 (a), (b)分别是工作频率为1.95和3.05 GHz, 纵向磁化磁场700 Oe时的情形; (c), (d)分别是工作频率为1.65和2.25 GHz时, 横向磁化场700 Oe时的情形 Figure6. Distributions of power loss density in the x-y cross section (the front view): (a) 1.95 GHz and (b) 3.05 GHz of longitudinal magnetization 700 Oe; (c) 1.65 GHz and (d) 2.25 GHz of transversal magnetization 700 Oe.