1.Department of Physics, Capital Normal University, Beijing 100048, China 2.Beijing Advanced Innovation Center for Imaging Theory and Technology, Beijing 100048, China 3.Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing 100048, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 5307625130)
Received Date:10 July 2019
Accepted Date:28 August 2019
Available Online:27 November 2019
Published Online:05 December 2019
Abstract:The electromagnetic wave with spiral wavefront is a vortex beam carrying orbital angular momentum. The phase singularity of the vortex beam has special applications in the fields of particle manipulation and communication. In this paper, a terahertz (THz) wide-band vortex beam generator based on reflective metasurface is proposed and simulated. The device consists of a metasurface-dielectric-metal three-layer structure, and the top layer is a metasurface composed of two orthogonal I-shaped metal structural units. The intermediate layer of polyimide medium, and the bottom layer is of metal as a reflecting plate. The CST microwave studio is used to simulate the reflection performance of unit cell. The structure parameters are optimized to obtain the better performance. A set of optimed structure parameters is determined. According to the phase principle of Pancharatnam-Berry (P-B), by rotating the angle of the top-layer I-type metal structure, the reflection amplitudes of the unit cell structure at different rotation angles are required to approximately equal while the phase changes linearly with rotation angle and reaches a range of 2lπ for the topological charge number l. These cell structures are arranged according to the phase principle mentioned above. The metasurfaces of different topological charge numbers are designed to generate the corresponding vortex beams. In this paper, the metasurfaces with topological charge numbers 1 and 2 are designed. The reflection amplitude and phase of the circularly polarized THz beam incident vertically on the metasurface are simulated by using CST microwave studio. The simulation results show that in a frequency range of 0.8?1.4 THz, the metasurface can convert the circularly polarized terahertz beam into a vortex beam with a different topological charge number. In addition, in order to illustrate that the metasurface designed can produce a higher topological charge number of vortex beam, a metasurface with a topological charge number of 3 is designed as an example. The reflection amplitude and phase of the circularly polarized THz beam at a frequency of 1.1 THz is simulated. The results show that the designed metasurface can produce a vortex beam with a topological charge number of 3. The higher topological charges of vortex beam can also be generated according to the corresponding phase arrangement. The device has a relatively wide operating bandwidth, simple structure, high conversion efficiency, and has the potential application in terahertz vortex beam generation. Keywords:terahertz/ vortex beam/ broadband/ metasurface
全文HTML
--> --> -->
2.理论分析为了实现利用超表面产生涡旋光的目的, 需要设计能够独立地控制入射和反射波的单元结构. 根据Pancharatnam-Berry (P-B)相位原理, 超表面上可以进行单元结构布阵, 各个单元应该能够获得振幅相近、相位可以独立调节的反射波. 我们提出了一个由正交I形金属结构单元组成的结构, 可以满足上述控制反射波振幅和相位的设计要求. 当一束平面波垂直照射到反射型超表面单元结构, 单元结构以其中心为旋转中心, 波束传播方向为旋转轴, 逆时针旋转α角时, 如图1所示, 反射矩阵可以写作[25]: 图 1 超表面单元结构示意图 (a)顶视图; (b)侧视图 Figure1. Schematic diagram of the unit cell of metasurface: (a) Top view; (b) side view.
$\varphi (x,y) = l \cdot \arctan \left({y}/{x}\right),$
其中$\varphi (x, y)$表示超表面$(x, y)$位置需要满足的相位, l表示拓扑荷数. 通过改变l的值可以产生不同拓扑荷数的涡旋波束. 本文设计了拓扑荷数l = 1和l = 2的反射型超表面. 根据(4)式确定的相位-位置关系以及单元结构相位是转角α的2倍关系, 排布了拓扑荷数为1和2的超表面结构, 如图5所示. 图 5 两种用于产生拓扑荷数分别为 (a) l = 1和(b) l = 2的涡旋波束超表面结构 Figure5. Two kinds of metasurface structures for generating the vortex beam with topological charge numbers (a) l = 1 and (b) l = 2.
对l = 1和l = 2的两种超表面反射波束特性进行仿真. 不失一般性, 假设入射波束为左旋圆偏振波, 半径r1, r2, r3分别设为120, 200, 300 μm, 其中, 半径的选择考虑到各个单元结构之间不能够重叠, 以及实验测量中的尺寸、加工难度的因素. 以0.93 THz为例, 图6给出了反射圆偏振波的振幅和相位分布. 图 6 超表面产生l = 1和l = 2的涡旋波束反射振幅和相位分布 LCP入射l = 1超表面的(a)振幅分布和(b)相位分布; RCP入射l = 2超表面的(c)振幅分布和(d)相位分布 Figure6. Reflective amplitude and phase distributions of vortex beams with l = 1 and l = 2 generated by metasurface. LCP incident l = 1 metasurface: (a) amplitude distribution and (b) phase distribution; RCP incident l = 2 metasurface: (c) amplitude distribution and (d) phase distribution.
图6(a)和图6(b)是0.93 THz处左旋圆偏振波垂直入射到拓扑荷数为1的反射型超表面上, 反射光场距离超表面500 μm处的反射振幅和相位分布. 从图中可以看出振幅呈现中心为暗环且中心强度始终为零的分布, 相位围绕一周改变2π. 图6(c)和图6(d)是0.93 THz的右旋圆偏振波垂直入射到拓扑荷数为2的反射型超表面上, 反射光场距离超表面500 μm处的反射振幅和相位分布. 可以看出振幅分布呈现中心场强为零, 外环场强相对较大, 相位覆盖4π. 表明了在圆偏振波束入射到超表面可以产生拓扑荷数为1和2的涡旋波束. 从图6(a)和图6(c)可以看出拓扑荷数为1的涡旋光束的中心暗环半径相对于拓扑荷数为2的涡旋光中心暗环半径较小, 这是因为随着拓扑荷数的增大, 超表面相邻的相位梯度也随之增大导致的. 在0.8—1.4 THz频段范围内, 圆偏光入射到超表面时均可产生涡旋光. 图7给出了在0.8 THz和1.4 THz两个频率下, 左旋圆偏振光入射在l = 1的超表面时, 反射波束在传播一定距离处的相位分布. 图 7 不同频率下l = 1和l = 3超表面产生的反射涡旋波束振幅、相位分布 l = 1超表面(a) 0.8 THz频率下振幅分布, (b) 0.8 THz频率下相位分布, (c) 1.4 THz频率下振幅分布, (d) 1.4 THz频率下相位分布; l = 3超表面(e) 1.1 THz频率下振幅分布, (f) 1.1 THz频率下相位分布 Figure7. The amplitude and phase distribution of reflective vortex beam generated by the LCP incident l = 1 and l = 3 metasurface at different frequencies. l = 1: (a) amplitude distribution at 0.8 THz, (b) phase distribution at 0.8 THz, (c) amplitude distribution at 1.4 THz, (d) phase distribution at 1.4 THz. l = 3: (e) amplitude distribution at 1.1 THz, (f) phase distribution at 1.1 THz.