1.School of Information Engineering, Suqian College, Suqian 223800, China 2.School of Physical Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11504418), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJB460022), and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16)
Received Date:16 May 2019
Accepted Date:19 August 2019
Available Online:01 November 2019
Published Online:20 November 2019
Abstract:How to overcome the friction between the micro components has become a key point of the successful operation of the micro/nano-electric mechanical systems. The understanding of the friction mechanism of the alkane liquid film confined between two substrates is important when the friction law on a macro/nano scale is not applicable. In this work, the molecular dynamics simulations are used to study the effect of the chain length on the friction properties of the liquid films that are confined between two golden substrates. There are seven pure alkane liquid films that are composed of one molecule CnH2n + 2(n = 6, 8, 10, 12, 14, 16, 18), and six mixed alkane liquid films that are composed of two molecules C6H14/CnH2n + 2(n = 8, 10, 12, 14, 16, 18) with a ratio of 1∶1. The results show that the friction force and the coefficient of friction of pure alkane liquid films both increase as the chain length increases when the carbon atom number is less than 12, whereas the friction property keeps stable when the carbon atom number of the alkane molecule is greater than 10 and the pure hexadecane liquid film has the largest friction force. In the mixed films, the addition of short chain alkane molecules can strengthen the friction, and the hexane/dodecane mixed film has the maximum friction force. The short chain molecule dilutes the C8H18 film and C10H22 film which cause the friction force to decrease. During the sliding progress, the formation of solid-like high density-packet layers is the main reason for the friction reduction. When no solid-like layer or just one solid-like layer is formed at the interface of golden base, the liquid alkane film is liquid-like and its viscosity becomes much larger than that in the normal state, which leads to high friction force. The short chain molecules reduce the density of the solid-like layers, which causes the film to transform from solid-like state to liquid state, thus resulting in the increase of friction. The friction property mainly depends on the layered structure, and the interaction between the golden surface and liquid film contributes to the friction. This study helps to understand the friction mechanism of ultra-thin liquid films. Keywords:nanotribology/ liquid film/ chain length/ structure
由于烷烃液体膜的分子呈完全无序分布状态, 其摩擦性质与有序分子膜有较大不同. 从图2(a)中可以看出, 随着滑动距离的增加, 纯C12H26膜(简记C12膜)的摩擦力呈现无规则变化, 有序分子膜在滑动过程中的规律“黏-滑”周期效应在此并未出现. 观察液体膜滑动的动画发现: 液体膜内的分子相互缠杂, 膜的构型在滑动过程中保持稳定, 分子并未发生周期性摆动振荡行为, 这也是“黏-滑”效应消失的主要原因. 图 2 (a) C12H26液体膜在滑动过程中的摩擦力随滑动距离的变化; (b) 7种液体膜的平均摩擦力和平均摩擦系数 Figure2. (a) Friction curve of C12H26 liquid film in sliding process with sliding distance; (b) the average friction force and average coefficient of friction (COF) of the seven liquid films
实验[7,22,23]及模拟[8]均表明, 在有序分子膜中加入的短链分子会增强膜的摩擦, 但实验[12]发现加入短链分子的无序烷烃膜的摩擦降低. 为探讨无序混合润滑膜的摩擦机理, 我们设计的6种混合液体分子膜进行了对比研究, 每种混合膜由C6H14和CnH2n + 2按1∶1比例混合而成(简记为C6Cn膜). 从图3中可看出, C6C12膜的摩擦力最大, 其摩擦系数较纯C12液体膜的摩擦力大56%左右, 而C6C8, C6C10和C6C16混合膜的摩擦力及摩擦系数分别较纯C8, C10和C16膜的摩擦系数略小. 混合膜C6C14和C6C18的摩擦力分别比纯C14和C18膜的摩擦力增大约15%. 此外, 从图3中也可看出, 当混合膜中长链CnH2n + 2分子中的碳原子大于12时, 摩擦力和摩擦系数变化不大, 摩擦性质较为稳定. 图 3 六种混合分子膜的平均摩擦力和平均摩擦系数 Figure3. The average friction force and average COF of the six mixed films
表1纯液体膜中上基板与液体膜间相互作用 (kJ/mol) Table1.Interaction between upper substrate and liquid film (kJ/mol)
当两基板间间距较小时(小于约6个分子层厚)时, 由于基板与液体膜间较强的吸附作用, 导致液体膜的等效黏度比其正常状态时的体相黏度高出4个数量级以上[10,11], 较高的黏度导致层状结构的形成. 层状结构的密度较常态下的密度大, 又称为类固层. 当基板与液体膜间相互作用较弱时, 无分层形成[11]. 从图4(a)中可看出, 纯C12H26液体膜在滑动过程中形成5层明显的类固层, 且各分层间有分子渗入相邻分层之中, 这种分子又称桥接分子, 桥接分子在一定程度上阻碍了两相邻分层的相对滑动, 这也是膜内部黏滞的主要来源. 从图4(b)中可看出, 在滑动过程中, 在C6膜两层基板表面附近各形成两层类固层, 在中间部分的密度较其他层稍小, 由于其分子链长较短, 内部黏滞较其他液体膜小. 纯C12膜和纯C18膜内形成五层明显分层, 且纯C12膜的分层密度比纯C18膜的分层密度要小, 这主要是由于分子链长增加导致分层内分子缠绕得更加紧密. 纯C16膜在上、下基板附近形成一层较为密度较大的分层, 但在这两单层之间无其他明显的分层行为, 且内部密度分布较为均匀, 具有流体特征, 这也是C16膜的摩擦比其他液体膜摩擦高的主要原因. 图 4 (a)纯C12H26液体膜在滑动过程中的分层结构; (b)四种纯液体膜沿Z方向的密度分布 Figure4. (a) Layered structure of C12H26 liquid film in sliding process; (b) density distribution along Z direction of four pure liquid films (C6H14, C12H26, C16H34, C18H40).
表2混合液体膜中上基板与液体膜间相互作用(kJ/mol) Table2.Interaction between upper substrate and mixed liquid film (kJ/mol).
滑动过程中, 紧邻基板表面形成的分层如图5. 从图5(a)和图5(c)中可以看出, C6C8及C6C18混合膜的分层均与基板吸附良好, 且分层内分子大部分完整地分布在分层之内, 且长链分子越长, 分层内的短链分子越少. Cui等[11]的研究也表明, 长链分子倾向于平行基板分布. 从图5(b)中可看出, 其分层并不完整, 有部分区域空心化, 这表明短链分子的加入对十二烷烃影响较大, 使其无法在基板表面形成稳定的类固层(见图6). 图 5 混合液体膜在上基板表面形成的分层内分子分布图 (a) C6C8; (b) C6C12; (c) C6C18 Figure5. Distribution of the molecules in the layer formed on the surface of the base: (a) C6C8; (b) C6C12; (c) C6C18.
图 6 混合膜在滑动过程沿着Z方向密度分布 Figure6. Distribution of density along Z direction in sliding process of mixed films