1.Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter Physics, Yili Normal University, Yining 835000, China 2.Laboratory of Micro-Nano Electro Biosensors and Bionic Devices, Yili Normal University, Yining 835000, China 3.Center of Urology, the Xinjiang Uygur Autonomous Region People’s Hospital, Urumqi 830000, China
Fund Project:Project supported by the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2019D01C333) and the National Natural Science Foundation of China (Grant No. 21764015)
Received Date:06 May 2019
Accepted Date:02 July 2019
Available Online:01 November 2019
Published Online:05 November 2019
Abstract:A recent experiment carried by Humphreys et al. (Humphreys B A, Wanless E J, Webber Grant B 2018 J. Colloid Interface Sci. 516 153) shows that when poly (N-isopropylacrylamide) (PNIPAM) tethered to nanoparticle surface is immersed in potassium thiocyanate solution, the thiocyanate anions (SCN–) can increase the low critical solution temperature (LCST) of the PNIPAM below 500 mmol, though the LCST is reduced when at 1000 mmol. It is unclear why the SCN– increases the LCST at low concentration and reduces the LCST at high concentration. In this paper, using a molecular theory, we investigate the effect of SCN– on the switching and the structure of PNIPAM tethered to nanoparticle surface. In our model the PNIPAM-SCN– bonding (P—S bonds), electrostatic effects and their explicit coupling to the PNIPAM conformations are taken into consideration. We find that under the low SCN– concentration, as the SCN– concentration increases, the SCN– is associated with the PNIPAM chains through the PNIPAM—S bonds, and the PNIPAM segments become negatively charged, which makes electrostatic repulsion stronger and results in an increase in the LCST.According to our model, the reduction of LCST at high SCN– concentration can be explained as follows: with the increase of SCN– concentration, more and more PNIPAM-SCN– bindings occur between SCN– and PNIPAM segments, which will lead the hydrophobicity of PNIPAM chains to increase. On the other hand, the P—S bonds have been filled at the high SCN– concentration, and the PNIPAM chains become more negatively charged. The increase of the SCN– is accompanied with an increase in the concentration of counterions (K+). The increase of counterion concentration will give rise to the counterion-mediated attractive interactions along the chains and electrostatic screening within the negatively charged PNIPAM, thus the LCST can be reduced when further increasing the SCN– concentration. The reduction of LCST can be attributed to the increased hydrophobicity of PNIPAM chains, or to the counterion-mediated attractive interaction along the chains and the screening of the electrostatic interactions. By analyzing the distribution of PNIPAM segments near the critical temperature, we find that the distribution of volume fractions of the PNIPAM tethered to nanoparticle surface shows a maximum when the hydration of PNIPAM and PNIPAM-SCN– binding are stronger, which implies that a vertical phase separation may occur. Based on our theoretical model, a vertical phase separation and a two-step phase transition behaviors in the PNIPAM tethered to nanoparticle surface are predicted. We also analyze the height of the PNIPAM, which is a function of temperature at different SCN– concentrations, and then obtain the critical temperature of the two-step phase transition. The results show that the vertical phase separation and the two-step phase transition are promoted by competition between hydrophobicity, hydrophilicity and electrostatic effects due to the P—S bonds. Our theoretical results are consistent with the experimental observations, and provide a fundamental understanding of the effects of SCN– on the LCST of PNIPAM tethered to nanoparticle surface. Keywords:poly (N-isopropylacrylamide) tethered to nanoparticle surface/ switching/ effect of thiocyanate anions
3.结果与讨论本节给出SCN–影响PNIPAM球面刷响应温度的构象转变和结构变化的结果, 并讨论物理机理. 首先, 分析在不同SCN–浓度条件下, PNIPAM球面刷的高度随温度变化的函数关系. 为了明确考察PNIPAM球面刷响应温度的构象转变特性, 可以考察PNIPAM球面刷的平均高度(高度)随温度的变化, 平均高度定义为[27]$H = 2(\left\langle r \right\rangle - R)$, 其中$\left\langle r \right\rangle = \displaystyle\int \dfrac{{\left\langle {{\phi _{\rm{p}}}(r)} \right\rangle {r^3}} \, {\rm{d}}r}{\left\langle {{\phi _{\rm{p}}}(r)} \right\rangle {r^2}{\rm{d}}r} $. 平均高度反映了刷中PNIPAM分子的平均伸展程度, PNIPAM链越是伸展平均高度越大; 反之, PNIPAM链越是蜷缩平均高度越小, PNIPAM刷的平均高度的变化反映出PNIPAM球面刷构象的转变. 图2显示了在不同SCN–浓度条件下, PNIPAM球面刷的高度与温度的关系. 如图2所示, 平均高度随温度的升高明显地变小, 这意味着PNIPAM球面刷的构象随温度的升高发生从溶胀到塌缩的转变. 在$H \approx 7\; {\rm{nm}}$可以获得接枝在纳米粒子表面的PNIPAM球面刷构象转变的LCST. 在SCN–浓度为10 mmol, 250 mmol, 500 mmol的溶液中, PNIPAM球面刷的构象转变的LCST分别约为33 ℃, 34 ℃, 34.5 ℃. LCST随着SCN–浓度的增加而轻微增加, 在高SCN–浓度溶液中, 刷构象转变的LCST随着SCN–浓度的增加(从750—1000 mmol), 由约31.5 ℃, 减小到约为31 ℃, 这与实验结果[15]一致. 实验[15]研究发现, 接枝在纳米离子表面的PNIPAM球面刷随着温度的升高而迅速塌缩, 并且在低浓度SCN–溶液中, 随着SCN–浓度的增加, 构象转变的LCST增加; 在高浓度SCN–溶液中, LCST随着SCN–浓度的增加而降低, 这一结果揭示了SCN–对PNIPAM球面刷的构象转变的LCST有一定的影响[15]. 图 2 接枝在纳米粒子表面的PNIPAM球面刷高度随温度的变化关系(其中结合能参数为${E_{\rm{p}}}/{k_{\rm{B}}}=1000\;{\rm{K}}$, 熵的损失为$\Delta {S_{\rm{p}}}= - 2.25$, ${\chi _{{\rm{p}}{\rm{w}}}}= - 0.45 + 135/T$, 接枝密度为$\sigma = 0.\, 05\;{\rm{n}}{{\rm{m}}^{ - 2}}$) Figure2. Height of the grafted PNIPAM brushes as a function of temperature. The P—S bond energetic gain is chosen as ${E_{\rm{p}}}/{k_{\rm{B}}}=1000\;{\rm{K}}$, and the entropic loss is given by $\Delta {S_{\rm{p}}}{\rm{ = }} - 2.25$. The surface coverage is $\sigma = 0.05\, \, {\rm{n}}{{\rm{m}}^{ - 2}}$.
实验研究结果表明[6,9], SCN–通过P—S键与PNIPAM的酰胺基团结合, 使得PNIPAM的单体带有负电荷, 这样会在PNIPAM链内和链间产生静电排斥, 导致SCN–在不同浓度条件下, 在一定程度上调节PNIPAM球面刷的构象转变LCST. 为了进一步理解这种现象的起源, 可以考察体系中的P—S键和静电势的分布. 图3显示了在SCN–浓度增加过程中, 不同SCN–浓度条件下P—S键分数距离纳米粒子表面的分布. 从图3可以看出, 在刷最内层, 由于受到强烈的排斥体积作用, P—S键分数几乎为零, 随着距离的增加, 在不同SCN–浓度条件下, P—S键分数在刷的内部都呈现了相当均匀的分布, 仅在非常靠近纳米粒子表面处P—S键分数较少. 比较图3中在不同SCN–浓度条件的P—S键分数分布, 可以发现, 在较低SCN–浓度条件下, P—S键分数随着SCN–浓度增加而显著地变大. 这是由于SCN–浓度增加会增大PNIPAM和SCN–形成P—S键的几率, 这时体系能量支持P—S键形成, 形成P—S键的自由能可以补偿PNIPAM伸展和PNIPAM分子间的排斥而损失的构象熵. 在较高SCN–浓度条件下, 随着SCN–浓度增加, P—S键分数轻微地变大, 增加趋势变缓, 这表明了P—S键的形成已经趋于饱和, 体系能量不支持P—S键形成. 图3中结果表明, P—S键分数取决于SCN–浓度, PNIPAM刷中定域P—S键分数随着SCN–浓度的增加而增加, 这会导致较多的SCN–结合到PNIPAM链中, 在刷内产生静电排斥作用. 图 3 P—S 键分数在垂直纳米粒子表面方向的分布(其中温度T = 31 ℃, 其余参数与图2相同) Figure3. Local fraction of P—S bond as a function of SCN– concentration at a given temperature of T = 31 ℃. All parameters are the same as those in Fig. 2.
图4显示了在不同SCN–浓度条件下PNIPAM球面刷体系中静电势的分布. 从图4可以看出, 静电势在PNIPAM刷内部呈现出负值, 随距离的增加而趋近于零. 在较低SCN–浓度条件下, 静电势随着SCN–浓度的增加而降低. PNIPAM刷中的负静电势意味着带负电荷的PNIPAM单体间的静电排斥, 随着SCN–浓度的增加, P—S键增加(图3), PNIPAM单体携带了更多的负电荷, 这样增大了静电排斥作用, 体系获得更多的自由能. 静电排斥将克服PNIPAM的弹性能, 导致PNIPAM链伸展并损失构象熵, 以降低体系自由能. 因此, PNIPAM球面刷构象转变过程中的LCST升高. 在较高的SCN–浓度条件下, P—S键的形成已经趋于饱和, PNIPAM单体结合的负电荷数趋于不变, 增加SCN–浓度, 会将较多的KSCN加入到本体溶液中, SCN–的增加伴随着抗衡离子K+浓度的增加. 抗衡离子会产生负的熵压, 这会引起PNIPAM刷塌缩. 在较高离子浓度条件下, 当离子间的距离小于了Debye长度, 会在沿着PNIPAM分子链方向, 出现以抗衡离子(K+)为中介的静电吸引和静电屏蔽, 因此刷的高度和LCST将降低. 图 4 体系静电势在距离垂直纳米粒子表面方向的分布(温度T = 31 ℃, 其余参数与图2相同) Figure4. Electrostatic potential as a function of the distance from the surface at different thiocyanate anion concentrations at a given temperature of T = 31 ℃. All parameters are the same as those in Fig. 2
另外, SCN–具有较弱水合性[17,18]. 理论研究[16]表明, P—S键的形成会降低PNIPAM的亲水作用. 在较高的SCN–浓度条件下, 由于SCN–和PNIPAM链单体间较多的P—S键形成, PNIPAM链的疏水性增强. 因此, 增强的静电屏蔽和PNIPAM链的疏水相互作用, 会导致在较高SCN–浓度下, PNIPAM球面刷的高度和LCST降低. 这样, 随着SCN–浓度的增加, PNIPAM刷的温度响应减弱. 这种行为与Humphreys等[15]的实验观察结果一致. 由此表明, SCN–调节PNIPAM刷的热响应性是P—S键形成导致PNIPAM的水合作用改变、以及体系中静电作用的直接结果, 因此可以推断SCN–不仅可以影响PNIPAM球面刷的热响应性, 而且还可以调节PNIPAM球面刷的结构. 图5展示了在临界温度附近, 在不同水合作用与不同P—S键结合能条件下, PNIPAM平均体积分数距离纳米粒子表面的分布. 较大的结合能意味着较强的P—S键作用, 表明体系中容易形成较多的P—S键. 比较图中弱水合、弱P—S键作用(图5(a))与较强的水合、P—S键作用(图5(b))条件的PNIPAM平均体积分数分布, 可以得出, 在弱水合、弱P—S键作用(图5(a))下, PNIPAM分子构象在T = 35 ℃时变得蜷缩, 在T = 32 ℃时变得伸展, 但是在较强的水合、P—S键作用下, PNIPAM分子在T = 33 ℃时蜷缩, 在T = 28 ℃时伸展. 由此可见, PNIPAM的水合性和P—S键作用可以在很大程度上决定PNIPAM刷的热响应性和刷的结构. 从图5(b)还可以看出, 在较强的水合、P—S键作用下, T = 30 ℃时的PNIPAM平均体积分数在距离纳米粒子表面约5.9 nm处出现一个最大值, 表明了在刷内出现了垂直相分离结构, 进一步降低温度, 这种垂直相分离结构则会由于水合性增强而被破坏. 之前的实验研究发现[15,18,19], 在100 mmol的KSCN溶液中, 当T = 32 ℃时, PNIPAM平面刷中呈现了这种垂直相分离结构结构. 图 5C = 750 mmol时PNIPAM分子链单体的平均体积分数在垂直纳米粒子表面方向的分布 (a) ${\chi _{{\rm{p}} {\rm{w}}}}= - 0.45 + 135/T, $${E_{\rm{p}}}/{k_{\rm{B}}}=1000{\kern 1 pt} \, {\kern 1 pt} {\rm{K;}}$ (b) ${\chi _{{\rm{p}} {\rm{w}}}}= - 2.25 + 95/T, {E_{\rm{p}}}/{k_{\rm{B}}}=2000\; {\rm{K}}$; 其余参数与图2相同 Figure5. Average volume fractions of the grafted PNIPAM chains as a function of the distance from the surface for C = 750 mmol: (a) ${E_{\rm{p}}}/{k_{\rm{B}}}=1000\; {\rm{K, }}\;{E_{\rm{p}}}/{k_{\rm{B}}}=1000\; {\rm{K}}$; (b) ${\chi _{{\rm{p}}{\kern 1 pt} {\rm{w}}}}= - 2.25 + 95/T,\; {E_{\rm{p}}}/{k_{\rm{B}}}=1800\; {\rm{K}}$. All parameters are the same as those in Fig. 2
图6显示了在较强的水合作用与不同P—S键结合能条件下, PNIPAM球面刷的高度与温度的关系. 图6中P—S键结合能取值大于图2中的结合能, 由此表明了这里较强的P—S键结合. 从图6可以看出, 在较强的水合作用以及较强的P—S键结合条件下, 随着温度的降低, 刷的高度呈现了两次台阶式的转变, 出现了两个转变的临界温度, 这也意味着在温度降低的过程中, 刷的结构发生了两次变化. 随着温度的降低, 在构象转变过程中先是出现垂直相分离结构, 刷的结构出现了第一次转变: 从塌缩结构到垂直相分离结构转变, 出现了第一次临界温度, 随着温度的降低, PNIPAM的亲水性增强(PNIPAM和水分子形成氢键增多, 致使PNIPAM的亲水作用增强[16,21]); 然而, 随着温度的降低, 形成的P—S键也在增多, 这又会导致PNIPAM呈现出了额外的疏水作用, 同时, 静电稳定性也在增强, 因此, 出现垂直相分离结构是PNIPAM的亲水作用与疏水作用、静电作用(静电排斥、静电屏蔽)竞争的结果, PNIPAM的亲水作用与疏水作用、静电作用竞争平衡稳定了垂直相分离结构. 当进一步降低温度, 亲水作用占据明显的优势, 在出现的第二次结构转变的临界温度附近, 垂直相分离结构失稳, 刷开始进一步溶胀(第二次转变), 这种效应类似于极化作用诱导的垂直相分离结构出现[28], 这种呈现两次转变临界温度现象也出现在混合溶剂(D2O/H2O)中的PNIPAM球面刷体系[29]. 图 6C = 750 mmol时PNIPAM球面刷高度随温度的变化(其中${\chi _{{\rm{p}}{\rm{w}}}}= - 2.25 + 95/T$, 其余参数与图2相同) Figure6. Height of the grafted PNIPAM brushes as a function of temperature at C = 750 mmol. The ${\chi _{{\rm{p}}{\rm{w}}}}= $ – 2.25 + 95/T. All parameters are the same as those in Fig. 2.