1.Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 2.University of Science and Technology of China, Hefei 230026, China 3.School of Electronics and Information Engineering, Anhui Jianzhu University, Hefei 230601, China 4.School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China 5.School of Electronic Engineering, National University of Defense Technology, Hefei 230036, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61471002, 61372094, 11405271), the Natural Science Foundation of Education Office Anhui Province, China (Grant Nos. KJ2016JD11, KJ2018A0510), and the Natural Science Foundation of Anhui Province, China (Grant No. 1808085MF206)
Received Date:28 November 2018
Accepted Date:26 July 2019
Available Online:01 October 2019
Published Online:20 October 2019
Abstract:Recently, helicon plasma sources have aroused the great interest particularly in plasma-material interaction under fusion conditions. In this paper, the helicon wave antenna in helicon physics prototype experiment (HPPX) is optimized. To reveal the effect of the radial density configuration on wave field and energy flow, Maxwell's equations for a radially nonuniform plasma with standard cold-plasma dielectric tensor are solved. Helicon wave coupling and power deposition are studied under different types of antennas, different antenna lengths and driving frequencies by using HELIC. Through the numerical simulation, the optimal antenna structure and size are obtained, that is, half helix antenna, which works at 13.56 MHz and has a length of 0.4 m, can generate nonaxisymmetric radio frequency energy coupling to excite higher electron density.The influences of different static magnetic fields and axis plasma densities on power deposition are also analyzed. It is found that the absorbed power of the plasma to the helicon wave has different peak power points in a multiple static magnetic field and axial plasma densities, and the overall coupling trend increases with static magnetic field increasing, but decreases with axis plasma density increasing. According to the simulation results, the ionization mechanism of helicon plasma is discussed. In order to further study the coupling of helicon wave with plasma in HPPX, the induced electromagnetic field and current density distribution are given when the plasma discharges. Under parabolic density distribution, the field intensity of the induced electric field at the edge is large, while neither the induced magnetic field nor current density changes much along the radial direction, the energy is distributed evenly in the whole plasma. Under the Gaussian density distribution, the induced electric field intensity is higher at the edge, while the induced magnetic field and current density in the center are much higher than at the edge. In this paper studied are the structure and size of helicon wave antenna, the influences of static magnetic field and axial plasma density on plasma power deposition and the distribution of induced electromagnetic field and current density during plasma discharge under different density distributions. This work will provide important theoretical basis for helicon wave antena design and relevant physical experiments on HPPX. Keywords:helicon plasma/ antenna/ static magnetic field/ axial plasma density/ power deposition
螺旋波通过TG-H耦合模式将能量传输给电子, 要求天线能很好地将射频源供给的能量耦合传递给螺旋波, 因此天线的选择至关重要. 目前, 用于直线磁约束产生等离子体的螺旋波天线主要有3种, 即Nagoya III型[26]、Boswell型[27]和Half helix型[28]. 这3种天线可有效激发m = +1的波动, 其能量沉积主要是角向模式[29]. 因其结构简单, 可激发高效螺旋波, 因此逐渐应用于各类螺旋波等离子体实验装置中. 从图3(a)中可以看出, 在抛物面密度分布下, Half helix型天线在等离子体中心及边缘处较Nagoya III型、Boswell型天线有较高的径向相对吸收功率, 且Nagoya III型天线和Boswell型天线在等离子体中耦合的效果差不多. 沿轴向的相对吸收功率(图3(c))更能明显地看出各种天线的吸收功率大小, Half helix型天线产生的电磁波在等离子体中的相对吸收功率最高, 其次是Nagoya III型天线, 最差的是Boswell型天线. 图 3 3种典型的螺旋波天线的径向(z = 0.2 m)和轴向(r = 0.02 m)相对吸收功率 (a)抛物面密度分布下3种天线的径向相对吸收功率; (b)高斯密度分布下3种天线的径向相对吸收功率; (c)抛物面密度分布下3种天线的轴向相对吸收功率; (d)高斯密度分布下3种天线的轴向相对吸收功率 Figure3. Relative power absorption in radial (z = 0.2 m) and axial (r = 0.02 m) directions for three typical helicon wave antennas: (a) Radial relative absorption power of three antennas under parabolic density distribution; (b) radial relative absorption power of three antennas under Gaussian density distribution; (c) axial relative absorption of power of three antennas under parabolic density distribution; (d) axial relative absorption of power of three antennas under Gaussian density distribution.
天线的长度也是HPPX装置中天线设计的一项重要指标. 在密度均匀的等离子体中, 轴向螺旋波的波长由(23)式得到: λz ≈ 0.1862 m, 由文献[30]可知, 天线和螺旋模式耦合较好时, kz ≈ π/LA, 3π/LA等, 对应的波长为λz ≈ 2LA, 2LA/3, 2LA/5等. 根据HPPX装置尺寸, 取λz ≈ 2LA/5, 则天线长度为LA ≈ 5λz/2 ≈ 0.4655 m, 考察不同天线长度下的吸收功率, 如图4所示. 图 4 不同天线长度下的径向(z = 0.2 m)吸收功率 (a)抛物面密度分布下天线长度对径向相对吸收功率的影响; (b)高斯密度分布下天线长度对径向相对吸收功率的影响; (c)抛物面密度分布下径向吸收功率随天线长度的变化曲线; (d)高斯密度分布下径向吸收功率随天线长度的变化曲线 Figure4. Relative power absorption in radial (z = 0.2 m) directions for different antenna lengths: (a) Effect of antenna length on radial relative absorption power under parabolic density distribution; (b) effect of antenna length on radial relative absorption power under Gaussian density distribution; (c) radial relative absorption power of different antennas lengths under parabolic density distribution; (d) radial relative absorption power of different antennas lengths under Gaussian density distribution.
天线的运行频率是一个非常重要的参数, 它影响着天线发射出的螺旋波在等离子体中的耦合效果. 选择6种典型的射频频率仿真对比它们的相对吸收功率(图5). 从图5(a)可以看出, 随着频率的增大, 相对吸收功率在等离子体边缘和中心处都逐渐减小, 而中心处的相对吸收功率降低更为明显, 说明TG波比H波在高频处能吸收更多的功率, 这可能是由于运行频率增加导致快速的电子运动和强烈的静电加热造成的. 减少径向压力, 使碰撞阻尼增大从而增加电子自由路径, 可能有助于将能量吸收从等离子体边缘重新分配到中心处. 图5(b)显示, 随着频率增加, 总体上等离子体中心处的径向吸收明显降低, 而边缘处变化不大, 这是由于高斯型密度分布下边缘处密度梯度变化较抛物面型分布平缓许多. 从这2幅图中可以看出, 并不是运行频率越高, 相对吸收功率就越高. 在径向吸收功率上, f = 13.56 MHz时的吸收最好, 之后随着运行频率的增加, 相对吸收功率下降得很快, 这从图5(c)和(d)中也可以明显地看出来. 因此, 在HPPX实验中13.56 MHz是螺旋波等离子体常用的频率[31]. 再次, 从图5中可以看出高斯分布下的等离子体的相对吸收功率要比抛物面时的大, 这和前面提到的基本一致. 图 5 不同运行频率下的径向(z = 0.2 m)吸收功率 (a)抛物面密度分布下天线运行频率对径向相对吸收功率的影响; (b)高斯密度分布下天线运行频率对径向相对吸收功率的影响; (c) 抛物面密度分布下径向吸收功率随运行频率的变化曲线; (d)高斯密度分布下径向吸收功率随运行频率的变化曲线 Figure5. Relative power absorption in radial (z = 0.2 m) directions for various operating frequencies: (a) Effect of various operating frequencies on radial relative absorption power under parabolic density distribution; (b) effect of various operating frequencies on radial relative absorption power under Gaussian density distribution; (c) radial relative absorption power of various operating frequencies under parabolic density distribution; (d) radial relative absorption power of various operating frequencies under Gaussian density distribution.
23.4.静磁场强度 -->
3.4.静磁场强度
等离子体中引入外部约束静磁场, 使得螺旋波深入等离子体柱中传播, 获得了高的功率耦合效率. 静磁场大小的改变对带电粒子的运动轨迹产生影响, 改变了各种粒子间的碰撞频率, 从而致使等离子体介电张量随之变化. 同时静磁场对电子与离子绕磁力线的回旋尺度的影响导致带电粒子的能量吸收区域发生改变, 从而产生波在等离子体中能量沉积的不均匀性问题, 可见磁场对等离子体的影响比较大. 设定磁场值从100 Gs (1 Gs = 10–4 T)到1000 Gs之间变化, 采样间隔为50 Gs, 计算得到等离子体的相对径向吸收功率(图6). 图 6 不同静磁场下的径向(z = 0.2 m)吸收功率 (a)抛物面密度分布下磁场对径向相对吸收功率的影响; (b)高斯密度分布下磁场对径向相对吸收功率的影响; (c)抛物面密度分布下径向吸收功率随磁场强度的变化曲线; (d)高斯密度分布下径向吸收功率随磁场强度的变化曲线 Figure6. Relative power absorption in radial (z = 0.2 m) directions for various static magnetic intensity: (a) Effect of various magnetic intensity on radial relative absorption power under parabolic density distribution; (b) effect of various magnetic intensity on radial relative absorption power under Gaussian density distribution; (c) radial relative absorption power of various magnetic intensity under parabolic density distribution; (d) radial relative absorption power of various magnetic intensity under Gaussian density distribution.
同样, 径向等离子体密度的非均匀性导致径向扰动电场的产生, 造成带电粒子的径向漂移, 从而改变了各种粒子间的碰撞频率, 进而使等离子体色散方程中介电张量也随之改变, 最终对等离子体的径向功率沉积产生影响. 设定密度值从1 × 1012到1 × 1013 cm–3之间变化, 每隔0.3 × 1012 cm–3进行一次采样, 计算得到等离子体吸收功率(图7). 在抛物面密度分布下(图7(a)), 当密度较低时, 等离子体中心处的吸收功率较低, 大部分功率集中在等离子体边缘部分. 这是由于TG波强烈的边缘加热, TG波是短波长准静电波, 当波在等离子体中向中心运动时, TG迅速衰减, 而H波只有微弱的阻尼, 能够深入等离子体中心处, 因此边缘处H波功率转换到TG波中. 但是随着密度逐渐变大, 等离子体中心的吸收有所下降. 在高斯密度分布下(图7(b)), 密度低时等离子体中心处的相对吸收功率较高, 但随着密度的逐渐增大, 中心处的吸收功率也慢慢变小, 边缘处变化不大明显. 图 7 不同密度下的径向(z = 0.2 m)吸收功率 (a)抛物面密度分布下密度对径向相对吸收功率的影响; (b)高斯密度分布下密度对径向相对吸收功率的影响; (c)抛物面密度分布下径向吸收功率随密度大小的变化曲线; (d)高斯密度分布下径向吸收功率随密度大小的变化曲线 Figure7. Relative power absorption in radial (z = 0.2 m) directions for various density: (a) Effect of various density on radial relative absorption power under parabolic density distribution; (b) effect of various density on radial relative absorption power under Gaussian density distribution; (c) radial relative absorption power of various density under parabolic density distribution; (d) radialrelative absorption power of various density under Gaussian density distribution.
为了进一步研究HPPX装置中螺旋波与等离子体的耦合, 图8给出了螺旋波等离子体的电场强度、感应磁场及电流密度的分布. 从图8(a)中可以看出, 在r < 0.07 m时抛物面下的电场强度和高斯分布下的电场强度相差不大, 越靠近边缘处高斯分布下的电场值越大, 这是因为两种密度分布下等离子体边缘处电子密度较小, 边缘处趋肤效应较小, 使得电子与离子碰撞几率增加, 相对于边缘处的电阻增大, 必然造成边缘处负载电压增大, 进而感生电场显著增大. 总体来说高斯分布下的电场强度径向分布较抛物面密度分布下的要大. 从图8(b)和图8(c)中可以看出在, 等离子体中心处高斯分布下的感生磁场和电流密度比抛物面下的分布大很多, 而靠近边缘处的磁场和电流逐渐变小, 这是因为从密度分布位型上看, 高斯分布时中心处电子密度最高, H波能够深入中心处传播引起电子运动速度加大进而导致电流密度增大, 从中心至r = 0.05 m处高斯分布下密度梯度变化较大, 由电流密度公式J = eneve (其中e为电子电荷量, ne 为电子密度, ve为电子速度)可以看出, 随着密度的降低, 磁感应强度及电流大小逐渐变小的趋势较为明显, 抛物面分布情况下, 磁感应强度及电流变化趋势相对平缓些, 说明场能量较均匀地分布在等离子体中. 图 8 不同密度分布下的等离子体径向(z = 0.2 m)感应电场、感应磁场及电流密度分布 Figure8. Radial profiles (z = 0.2 m) of wave electric field, magnetic field and current density in parabolic density profile and Gaussian density profile.