Abstract:Ti3O5 is a highly anticipated functional material due to its intriguing physical properties and multi-incentive phase transition process. This material undergoes a reversible first-order phase transition between λ phase and β phase, accompanied by drastic changes in the electronic and atomic structure. The amazing way of changing phase such as light, heat, pressure and electric current makes this material promise to be used in future optical information storage and heat storage. In this work, structural, elastic, electronic and optical properties of λ-Ti3O5 and β-Ti3O5 are calculated by using a first-principles approach, according to density functional theory (DFT). The LSDA, GGA-PBE, GGA-91, GGA-PS and GGA-RP are compared among them to obtain a suitable method of characterizing the crystal structure and electronic structure of λ-Ti3O5 and β-Ti3O5. The energy gap at the Fermi level of β-Ti3O5 can be obtained only when the extra Coulomb correlation U effect of Ti 3d electrons is considered. A complete set of elastic parameters for both phases are first reported. The calculated elastic constant satisfies the Born stability criterion, indicating that λ phase and β phase have good mechanical structural stability. The two phases are more resistant to volume changes than to shape changes and both behave as ductile materials. On the (010) plane, the elastic anisotropy of λ phase is weaker than that of β phase. Studies on the electronic structure show that the local charge of Ti3 is transferred to Ti2, resulting in the transformation of the semiconductor β phase to the metal λ phase. There are large differences in optical property such as absorption and reflectivity between these two structures, indicating that they can be applied to the field of optical storage materials. In this paper we also present a new insight into the photoinduced phase transition process of this material. The mechanism of photoinduced phase transition from λ-Ti3O5 to β-Ti3O5 is considered as stimulated emission effect. The results are of significance particularly for practically applying Ti3O5 and understanding its phase change mechanism. Keywords:Ti3O5/ first principle/ elastic properities/ electronic properties
全文HTML
--> --> --> -->
3.1.U值和晶格参数测试
采用禁带宽度来表现β的半导体性质, U = 5 eV时, GGA + U方法所得到的禁带宽度为0.14 eV, 与实验报道一致[6]. 然而当采用LSDA + U方法时, 本文使用Liu等[23]建议的U = 5 eV和Olguin等[24]建议的U = 7 eV时均未能得到符合实验值的禁带宽度. 因此, 我们采用了一系列的U值来计算β相的禁带宽度, 如图2所示. 当U = 6.5 eV时, 采用LSDA + U方法计算得到的禁带宽度与实验值相符. 计算得到的两相晶格参数列于表1. 由于U值的影响所得到的晶格参数有所增加. LSDA + U计算得到的晶格参数与实验值符合最好. 因此, 采用LSDA + U方法进行后续计算. 图 2 LSDA泛函计算得到的β-Ti3O5的禁带宽度随U值的变化 Figure2. The band gap of β-Ti3O5 calculated by LSDA as a function of U values.
表3计算得到的体积模量(BH, GPa), 剪切模量(GH, GPa), 杨氏模量(YH, GPa)和泊松比(ν) Table3.Calculated bulk modulus (BH, in GPa), shear modulus (GH, in GPa), Young's modulus (YH, in GPa) and Poisson's ratio (ν).
23.3.电子结构 -->
3.3.电子结构
图3所示为λ和β相的能带结构和态密度. 在–2 eV到费米能级之间λ相有一个自旋向上的峰, 而β相有两个自旋向上峰. 该区域内β相的能带表现较为分散而λ相的能带较为聚集. 因此, 该区域内λ相的电子比β相要更容易发生带间转移. 除此外, β相在–1.5 eV处有一个又大又窄的局域峰, 说明β相是一个电荷局域系统, 这与其表现半导体性质相符. 相比之下, λ相对比β相表现为电荷非局域系统, 因此表现为金属相特征. 图 3λ-Ti3O5的(a)能带结构和(b)态密度以及β-Ti3O5的(c)能带结构和(d)态密度 Figure3. The calculated (a) band structure and (b) total density of states of λ-Ti3O5; the calculated (c) band structure and (d) total density of states of β-Ti3O5.
图4为两相的分态密度图. 对于β相, 在–1.5 eV处同时出现了一个Ti-3d态窄峰和一个O-2p态窄峰. 它们共同构成了β相中又大又窄的局域峰(见图3(d)). 这个杂化峰说明β相具有比λ相更强的共价键特征. 因此, λ相的金属相特征更明显而β相的半导体特征更明显. 如图4(b)所示, 费米能级附近的Ti-3d态可以分为两部分: 在1 eV处对称的自旋向上和自旋向下态, 以及2.5 eV处单独的自旋向下态. 而在图4(a)中, 对称的自旋态下降到了费米能级处, 而单独的自旋向下态上移到了能量更高的区域. 这个现象可以用Jahn-Teller效应[31]来解释. 随着β相转变为λ相, 系统中的晶体场结构扭曲, Ti-3d态发生退简并, 因此其3d轨道劈裂为了一个高能量部分和一个低能量部分. 图 4 (a) λ-Ti3O5和(b) β-Ti3O5 的分态密度 Figure4. The partial density of states for (a) λ-Ti3O5 and (b) β-Ti3O5.
为进一步描述两相的电子结构, 计算了(010)晶面的差分电荷密度, 如图5所示,红色代表得到电子, 蓝色表示失去电子. 如图5(a)所示, λ相中Ti3失去了最多电子. 如图5(b)所示, β相中Ti2失去了最多电子. 这与Ohkoshi等[6]给出的Ti离子价态数相符合(λ相中Ti1, Ti2和Ti3的价态分别为+3.37, +3.20和 +3.53; β相中Ti1, Ti2和Ti3的价态分别为+3.00, +3.79和 +3.32). 实际上, 两相电子结构的差异主要是由Ti1, Ti2和Ti3的状态变化决定. 对图5中电荷状态的分析, 我们得到了和Tokoro等[18]一样的结论: Ti3上的局域电荷转移到了Ti2上, 导致了半导体β相向金属λ相的转变. 图 5 (a) λ-Ti3O5和(b) β-Ti3O5的(010)晶面上的差分电荷密度 Figure5. The calculated charge density differences of (010) plane for (a) λ-Ti3O5 and (b) β-Ti3O5.
23.4.光学性质 -->
3.4.光学性质
图6为两相的光吸收以及反射率谱图. 从整体上来看, 两相的光吸收能力相差不大. 在425—570 nm波长内, β相的光吸收能力要高于λ相, 而在更高的波长范围内却出现了相反的趋势. 在低于250 nm和450—570 nm范围内, β相的反射系数高于λ相. 而在250—450 nm和高于570 nm范围内, λ相的反射系数高于β相. 这两相间的反射系数差异使得它们可以应用于光学存储材料领域. 图 6λ-Ti3O5和β-Ti3O5的光吸收以及反射率谱图 Figure6. The calculated absorption spectra and reflection coefficients of λ-Ti3O5 and β-Ti3O5.