Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51675236) and the Training Program of the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91648109)
Received Date:26 May 2019
Accepted Date:05 July 2019
Available Online:01 October 2019
Published Online:05 October 2019
Abstract:With the advent of global warming and energy crisis, the search for renewable energy to reduce carbon emissions has become one of the most urgent challenges. Ithas become a research hotspot to collect or harvest various mechanical energy in nature and convert it into electric energy. Vibration is a common form of mechanical movement in our daily life. It is visible both on most working machines and in nature and is a type of potential energy. There are several methods that can convert such mechanical energy into electric energy. Triboelectric nanogenerator (TENG) based on the principle of contact electrification and electrostatic induction which first appeared in 2012 by Zhonglin Wang provides a feasible method of efficiently collecting the vibrational energy with different vibrating frequencies. In this paper, a contact-separation mode of TENG is designed and implemented. The voltage- quantity of charge- distance(V-Q-x)relation of TENG is calculated. During the experiment, the factors such as load resistance, vibration frequency, etc. which affect the output performance, are considered and analyzed. An electrically driven crank-connecting rod mechanism is employed to provide the vibration source with adjustable frequency in a range of 1-6 Hz. The result shows that the amount of charge transfer in each working cycle remains almost unchanged, while the voltage and current increase with frequency increasing. When the frequency is 5 Hz, the best power matching resistance of the TENG is about 33 MΩ and the maximum output power reaches 0.5 mW. For a further study, a COMSOL software is used to simulate the distribution rule and variation rule of the electric potential in the contact-separation process, then the theoretical charge density and the experimental charge density on the polymer surface are compared and analyzed in order to provide theoretical and practical support for the design of TENG with collected vibration energy and self-powered vibration sensor. The result shows that the electric potential is proportional to the distance between two friction layers. While as the distance between two friction layers increases, the electric potential and the charge density both show a tendency to concentrate in the middle of the friction layer. The huge difference between experimental result and the simulation predicts thatmuch work should be done continually to improve the output of the TENG. Finally, the obtained results conduce to understanding the contact electrification and electrostatic induction mechanism and also provide a new method of harvesting the vibration energy. Keywords:triboelectric nanogenerator/ output performance/ vibration energy harvesting/ contact separation/ metal-polymer
为了更清晰地理解基于PDMS垂直接触式TENG的原理及性能, 我们使用多物理场软件Comsol Multiphsics对TENG进行理论模拟仿真, 通过模拟该TENG结构的电势分布、电荷分布以及能量等方面来进行理论分析. 首先, 建立如图4所示的三维模型, 考虑整个模拟条件的建立是以实际实验为根据, 设定了空气边界, 表面电荷密度设为10 μC/m2. 通过改变铝箔与PDMS的距离, 得到两电极相互接触后的电势云图. 图 4 TENG三维模型示意图 Figure4. Schematic diagram of the TENGs 3D model
23.3.TENG 的电学性能仿真结果分析 -->
3.3.TENG 的电学性能仿真结果分析
通过模拟仿真可以得到如图5所示的模拟计算结果. 由分析结果可以看出电势(开路电压)随着摩擦层间距离的增大而增大. 依据模拟条件, 电荷均匀分布在聚合物内表面, 两个绝缘体和空气间隙内部形成电场, 转移的电荷量决定电场强度大小, 在电场强度一定的情况下, 电势正比于摩擦层间距离, 因此电势也逐渐增大, 此种电势变化结果证明了TENG的电学原理. 此外在理论分析中, 常把两摩擦层当作理想模型, 即两摩擦层面积无限大, 但在模拟过程中, 设计的几何参量并不是无限大, 因此模拟结果也出现了边缘效应, 随着摩擦层间距离的增加, 出现电势向摩擦层中间集中的现象, 该现象主要是因为随着摩擦层间距离的增加, 摩擦层的尺寸(面积S)相对分离距离不再是无穷大, 实际的电场线也不再是匀强电场, 电场线的分布随着摩擦层距离的增大也越来越近似于两个点电荷间的电场线分布, 因此会出现边缘现象. 图 5 不同分离距离的电势分布图 Figure5. The potential distribution picture with different distance
为进一步验证, 我们对电能密度进行仿真, 结果如图6所示. 由图可以看出, 随着两摩擦层间距离的增大, 电能密度呈现向摩擦层中部集中的趋势, 并且逐渐减小, 与电势分布呈现结果一致. 出现这一现象的原因还有空气击穿的原因, 与电势集中分布情况一样, 电能密度集中分布很大部分来源于边缘效应, 电能密度逐渐减小与空气击穿效应有着很大关系. 通常通过提高摩擦层表面的电荷密度来增加TENG的能量输出, 但在此过程中也要考虑到空气击穿等因素. 图 6 不同距离的电能密度分布图 Figure6. The energy density distribution picture with different distance
23.4.数值分析 -->
3.4.数值分析
建立了如图7所示的垂直接触式TENGV-Q-x模型, 在该结构中, 金属铝(Al)既作为上电极也作为摩擦电极, 其表面的电荷由两部分构成: 一部分是由摩擦产生的电荷量($S\sigma $), 另一部分是两个电极之间转移的电荷量(–Q). 故金属Al电极上的电荷量为$S\sigma - Q$, 两电极间的电压为 图 7 垂直接触TENG的V-Q-x模型 Figure7.V-Q-x model of vertical contact TENGs
$V = - \frac{Q}{{S{\varepsilon _0}}}\left( {\frac{{{d_0}}}{{{\varepsilon _{\rm{r}}}}} + x\left( t \right)} \right) + \frac{{\sigma x\left( t \right)}}{{{\varepsilon _0}}},$
当振动频率为5 Hz时, TENG(3 cm × 3 cm × 0.1 mm)产生的输出电压和短路电流的峰值能够达到196 V和9.4 μA, 电压和电流曲线如图8(a)和8(b)所示. 图8(c)为一个周期中输出电流的放大图, A, B, C三点为Al箔和PDMS薄膜初始接触、完全接触、完全分离时的状态. 通过对电流曲线积分可得到电荷转移量Q, 电荷量的积分公式为 图 8 振动频率为5 Hz时, TENG的输出特性 (a)开路电压; (b)短路电流; (c)一个周期中电荷转移量 Figure8. Out performance of the TENG when the vibration frequency is 5 Hz: (a) The open circuit voltage; (b) the short circuit current of the TEGs; (c) the amount of the charge transferred in one cycle
TENG是基于接触起电和静电感应的耦合效应, 与传统的电磁感应发电机不同. TENG本身是电容性的, 具有非常高的内部阻抗, 因此负载电阻对输出性能的影响较大, 而且存在一个最优电阻匹配问题. 图9为TENG输出功率、输出电流、输出电压随负载电阻(1—1000 MΩ)的变化趋势. 由图9(a)可以看出电压随着电阻的增大而增大, 当负载电阻由1 MΩ增大到1000 MΩ时, 输出电压从9.4 V逐渐增大到200 V. 电流随着负载的增大而减小, 当负载电阻由1 MΩ增大到300 MΩ时, 输出电流由9.4 μA逐渐减小到0.6 μA. 根据功率和负载电阻的计算公式$P = {U^2}/R$,可以得出输出功率随电阻的变化曲线如由图9(b)所示. 结果表明输出功率随负载电阻先增大再减小, 并且在33 MΩ时, 输出功率达到最大, 最大输出为0.5 mW. 即表明此发电机的功率匹配阻值约为33 MΩ. 图 9 振动频率为5 Hz时TENG的输出性能随外负载的变化曲线 (a)摩擦纳米发电机的输出电压; (b)输出功率、电流 Figure9. The output performance curves with external load at a frequency of 5 Hz: (a) The output voltage; (b) the output power and current of TENG
24.3.TENG频率响应测试 -->
4.3.TENG频率响应测试
接触-分离频率是影响TENG输出性能的一个重要因素. 控制TENG其他因素(面积、测试压力、环境因素等)不变的情况下, 对TENG施加1—6 Hz不同频率的外力, 获得不同频率下的输出电压以及电流情况. 如图10所示, 当频率从1 Hz增大到6 Hz时, 输出电压从45 V增大到210 V, 输出电流从2.8 μA增大到12.2 μA, 但在TENG接触压力、分离距离等因素不变的情况下, 一个周期内的电荷转移量几乎不变. 为了进一步验证上述理论, 对不同频率下单个周期的电荷量进行计算, 结果如图10(c)所示. 图示表明在不同频率下, 单个周期内的电荷转移量几乎相同, 与TENG基础理论得出的结论一致. TENG是一个电流源, 它的输出性能一定程度上取决于电荷转移的数量、效率、速度等因素. 这里电荷的转移量几乎相同, 而电压和电流随着频率的增大而增大. 电流定义: 单位时间内转移的电荷量: 图 10 不同测试频率下的输出性能 (a)输出电压; (b)输出电流; (c)单个周期内电荷转移量 Figure10. The output performance of the TENG under different testing frequency: (a) Output voltage; (b) output current; (c) the amount of transferred charge in a single cycle at different test frequencies