1.Centre for THz Research, China Jiliang University, Hangzhou 310018, China 2.Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355, 61831012, 51704267) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LY18F010016, LY17E04002)
Received Date:04 July 2019
Accepted Date:15 August 2019
Available Online:01 October 2019
Published Online:20 October 2019
Abstract:Refractive index sensing is attracting extensive attention in biochemical sensing using terahertz technology. Various structures with strong confinements have been used to design sensors for improving the interaction between the terahertz wave field and the analytes, such as photonic crystals, nanowires, plasmonic structures, and metamaterials. Terahertz wave sensors based on two-dimensional photonic crystal have been used in various areas ranging from disease diagnostics to environmental pollution detection. For improving the performance of terahertz sensor, a sensing scheme based on high-density polyethylene sunflower-typecircular photonic crystal structure is proposed. The designed sensor contains two symmetrical sample cells surrounding a cavity in a circular photonic crystal. The transmission properties of the terahertz wave sensor are analyzed based on COMSOL Multiphysics when the central sample cells are filled with analyte with different refractive indices. The sensor characteristics depending on the structure parameters are analyzed. The choice of these parameters is discussed. Finally, a sensitivity of 10.4 μm/RIU, Q-factor of 62.21, and figure-of-merit of 1.46 are realized. The results in this work are expected to be able to extend the circular photonic crystal-based sensor to terahertz wave region. Keywords:treahertz wave/ refractive index sensor/ circular photonic crystal/ high sensitivity
2.模型和理论研究图1给出本文所设计的基于向日葵型圆形光子晶体太赫兹传感器结构图. 在o-xy平面上的散射体(HDPE基板中的气孔)的空间晶格位置由下面公式描述[29]: 图 1 圆形光子晶体太赫兹波传感器 (a)二维结构; (b)三维结构 Figure1. (a) 2D structure of the terahertz wave sensor based on the circular photonic crystal; (b) 3D structure of the sensor.
3.研究结果及讨论为了获得上述的物理量(S, Q和FOM), 在图3中, 计算了分析物样品折射率n在1.1—1.5变化时在频率范围0.5—2.0 THz内的太赫兹波透射光谱, 折射率变化步长为0.1. 传感器在填充有不同折射率分析物时的透射光谱呈现出相似的变化趋势, 如图3所示. 图 3 不同样品折射率时圆形光子晶体传感器在0.5— 2.0 THz范围内的透射谱 Figure3. Transmission spectra of the circular photonic crystal sensor ranging from 0.5 to 2.0 THz with different refractive indices of the samples.
图4给出了传感器在太赫兹波频率范围1.15—1.35 THz内的详细的透射光谱. 图4的插图是传感器在频率为1.233 THz、折射率为1.0时的2D电场分布, 此时入射到传感器的太赫兹波由于散射或者反射, 无法到达传感器输出端. 随着分析物的折射率n以步长Δn = 0.1从1.1增加到1.5, 传感器的透射极小值频率从1.233 THz降低到1.220 THz, 如图4所示. 图 4 圆形光子晶体传感器共振频率1.233 THz附近的透射光谱 Figure4. Transmission spectra of the circular photonic crystal sensor around the selected resonant frequency of 1.233 THz with different refractive indices of the samples.
根据(2)式可以计算得到灵敏度为6.475 μm/RIU. 根据(3)式和(4)式, 可以获得对应的Q因子和FOM分别为52.57和1.40. 该折射率范围表明本文提出的太赫兹折射率传感器可以广泛应用于气体传感或者液体传感领域. 为了提升传感器的传感性能, 对包括t和g在内的传感器的结构参数进行了优化. 参数t和g对灵敏度S, Q因子和FOM的影响如图5和图6所示. 图 5 当g = 0 μm参数t对灵敏度S, Q因子和FOM的影响 Figure5. Influence of t on sensitivity S, Q-factor and FOM when g = 0 μm.
图 6 当t = 0 μm时参数g对灵敏度S, Q因子和FOM的影响 Figure6. Influence of g on sensitivity S, Q-factor and FOM when t = 0 μm.