1.School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China 2.Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403703) and the National Natural Science Foundation of China (Grant No. U1830205).
Received Date:01 April 2019
Accepted Date:27 June 2019
Available Online:01 September 2019
Published Online:20 September 2019
Abstract:It is predicted in many theories beyond the standard model that the new interaction relevant to spin is existent. The exchange of an axial vector particle will result in attractive dipole-dipole interaction which can be viewed as an effective magnetic potential that looks quite different from those expected from electromagnetism. In this work, we demonstrate that, instead of the laboratory spin source, stringent constraints can be set on these attractive spin-spin interactions from polarized nuclear matters within neutron stars which have extremely strong magnetic fields (up to 1015 G in some cases). By considering such an exotic interaction within the framework of relativistic mean field model, we find that the stability of infinite nuclear matter can be influenced significantly when the ratio of coupling strength to boson mass become larger than $g_{\rm A}^2/m_{\rm Z'}^2 \sim {\cal O}(10 \, {\rm GeV^{-2}})$. Furthermore, based on the curvature matrix approach, when $g_{\rm A}^2/m_{\rm Z'}^2 > 130 \, {\rm GeV^{-2}}$, phase transition inside low-density nuclear matter will no longer take place before the pressure of nuclear matter becomes zero, which forbids core-crust transition at the inner edge separating the liquid core from the solid crust of neutron stars. Thus bare neutron stars without any crusts are predicted. However, observations of pulsar glitches, i.e., the occasional disruptions of the extremely regular pulsations from magnetized, rotating neutron stars, imply the existence of crusts inside these dense objects. This in turn constrains the strength of the exotic interaction. In fact, in the case of dipole-dipole force on a length scale between μm to cm, the highest value of these constraints can be 8 orders of magnitude higher than those from existing laboratory results. Keywords:neutron star/ theories beyond standard model/ new interactions
全文HTML
--> --> --> -->
2.1.无穷大核物质的状态方程
中子星99%以上的质量都是由核物质芯贡献的, 主要是由达到了β平衡而稳定存在的电中性n, p, e, μ (即中子、质子、电子和μ子)物质组成. 其中中子和质子物质可以通过无穷大的均匀核物质模型描述, 其性质由物质的状态方程决定. 对无穷大核物质状态方程的研究一直以来都是核物理领域的重要课题之一, 其研究成果能够广泛地应用于对其他物理现象的计算与理解之中, 是帮助物理学家更好地认识物理世界的重要工具[22]. 无穷大核物质(之后简称核物质)是一种由大量核子组成的理想流体系统, 其中核子间由核力束缚而保持稳定. 核物质的状态方程一般被定义为核物质内的单核子结合能, 对于无穷大的核物质系统其大小是中子、质子数密度($ n_{\rm n} $和$ n_{\rm p} $)的函数. 考虑到中子星内物质为相对论性的流体, 本文使用非线性的相对论平均场模型(relativistic mean field model, RMF模型)结合参数化的有效核子间相互作用计算核物质的状态方程. 模型中描述核子间相互作用的有效拉氏量密度由下式给出[23]:
图3给出了上述约束(实线及以上的灰色区域), 并将其与现有地面实验对$ g^{\rm A}_{\rm Z'} $的约束进行了比较(虚线和点画线画出的区域). 可以看到, 中子星存在壳层的约束在力程从厘米到微米的四个量级范围内远强于地面实验的约束, 其中对于亚厘米量级力程的新相互作用(46)式给出的约束比现有实验结果有最高8个量级的提升[13,14,26]. 图 3 星震现象对轴矢量新相互作用的约束和其他地面实验中所得约束的对比[13,14,26] Figure3. Exclusion contour of the axial-axial couplings from the existence of neutron star crusts. We compare our constraints with other experiments as well[13,14,26].