1.Institute of Applied Physics and Computational Mathematics, Beijing 100094, China 2.HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China 3.IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China 4.Graduate School, China Academy of Engineering Physics, Beijing 100088, China 5.STPPL, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Fund Project:Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Key R&D Program of China (Grant No. 2016YFA0401100), the Joint Funds of the National Natural Science Foundation of China (Grant No. U1730449), and the National Natural Science Foundation of China (Grant No. 11575030)
Received Date:21 May 2019
Accepted Date:03 July 2019
Available Online:01 September 2019
Published Online:20 September 2019
Abstract: The electric and magnetic fields generated by the Weibel instability, most of which have a tube-like structure, are of importance for many relevant physical processes in the astrophysics and the inertial confinement fusion. Experimentally, proton radiography is a commonly used method to diagnose the Weibel instability, where the proton deflection introduced from the self-generated electric field is usually ignored. This assumption, however, is in conflict with the experimental observations by Quinn, Fox and Huntington, et al. because the magnetic field with a tube-like structure cannot introduce parallel flux striations on the deflection plane in the proton radiography. In this paper, we re-examine the nature of the proton radiography of the Weibel instability numerically. Two symmetric counterstreaming plasma flows are used to generate the electron Weibel instability with the three-dimensional particle-in-cell simulations. The proton radiography of the Weibel instability generated electric and magnetic fields are calculated with the ray tracing method. Three cases are considered andcompared: only the self-generated electric field E is included, only the self-generated magnetic field B is included, both the electric field E and magnetic field B are included. It is shown that when only E is included, the probe proton flux density perturbation on the detection plane, i.e., δn/n0, is much larger than that when only B is included. Also, when both E and B are included, δn/n0 is almost the same as that when only E is included. This suggests that in the proton radiography of the Weibel instability generated electric and magnetic fields, the deflection from the electric field dominates the radiography, whereas the magnetic field has an ignorable influence. Our conclusion is quite different from that obtained on the traditional assumption that the electric field is ignorable in the radiography. This mainly comes from the spatial structure of the Weibel instability generated magnetic field, which is tube-like and points to the azimuthal direction around the current filaments. When the probe protons pass through the field region, the deflection from the azimuthal magnetic field can be compensated for completely by itself along the passing trajectories especially if the deflection distance inside the field region is small. Whereas for the electric field, which is in the radial direction, the deflection to the probe protons will not be totally compensated for and will finally introduce an evident flux density perturbation into the detection plane. This understanding can beconducive to the comprehension of the experimental results about the proton radiography of the Weibel instability. Keywords:Weibel instability/ proton radiography/ electric and magnetic diagnostics/ particle-in-cell simulations
图3为模拟区域内自生磁场总能量εB和电场总能量εE随着时间的演化情况. 图中曲线显示出典型的电子Weibel不稳定性磁场和电场能量的变化规律[15]. 即在线性增长阶段, 因为电流的箍缩, 等离子体的部分动能被转化为磁场能量. 同时, 随着箍缩作用的加剧, 空间电荷效应引起的静电场能量也开始上升, 直至t = 1.22 ps时达到饱和. 此时, 电场能量与磁场能量相当, 这主要是因为当电子束温度较低而对穿速度较大时, 强烈的箍缩作用可产生明显的空间电荷分离[19]. 而在Weibel不稳定性达到饱和后的非线性发展阶段, 电场和磁场能量通过离子的静电响应和磁重联机制被缓慢地转移给等离子体并最终导致了等离子体的热化[5,11,20—22]. 此外, 电场能量和磁场能量具有明显的相关性, 这主要是因为当横向位移电流较小时, 径向电场和磁场压力达到平衡状态, 即$E = - \dfrac{{\nabla {B^2}}}{{e{n_{\rm{e}}}{\mu _0}}}$, 其中ne为等离子体密度, μ0为真空磁导率[12]. 图 3 Weibel不稳定性自生磁场和电场能量随着时间的演化 Figure3. Evolution of the energy of the Weibel instability generated magnetic and electric fields.
图4为t = 1.06 ps时的磁场和电场在z = 0和y = 0平面上的空间分布情况. 根据图3显示, 此时磁场能量和电场能量接近线性增长的峰值时刻, Weibel不稳定性即将达到饱和, 而且磁场能量略大于电场能量. 其中, z = 0平面上的电场和磁场强度分布, 即图4(a)和图4(b), 均显示出随机分布的特征. 图4(c)和图4(d)中磁场和电场的矢量分布显示, 磁场的方向为环向, 电场方向为径向. 电磁场的这种指向符合Weibel不稳定性的典型图像, 即磁场围绕着z向丝状电流产生, 而电场则是由x-y平面内箍缩作用引起的电荷累积所导致[15]. y = 0平面上的电场和磁场结构, 即图4(e)和图4(f), 则显示出丝状特征. 这种二维各向同性随机的分布同样符合Weibel不稳定性的典型特征[15]. 此时, 磁场的峰值强度约51 T, 电场的峰值强度约为1.1 × 1010 V/m. 图 4t = 1.06 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况 Figure4. Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 1.06 ps.
图5为t = 4.78 ps时的磁场和电场分布情况. 根据图3显示, 此时Weibel不稳定性已进入饱和后的非线性演化阶段, 磁场和电场的能量均有所下降, 但电场能量因为下降得更快而只约为磁场能量的0.03倍. 与t = 1.06 ps时对比, 除了磁场方向仍然为环向, 电场方向仍然为径向外, t = 4.78 ps时的电场和磁场空间结构同样显示出二维各向同性随机分布的特征, 但在z方向更加均匀平滑. 此时, 磁场强度峰值约33 T, 电场的峰值强度约为2.8 × 109 V/m. 另外, 横向空间周期明显变长, 说明发生了磁重联[22]. 图 5t = 4.78 ps时, z = 0平面上(a)磁场强度|B|、(b)电场强度|E|、(c)磁场方向和(d)电场方向的分布情况以及y = 0平面上(e) y向磁场By和(f) y向电场Ey的分布情况 Figure5. Spatial distributions of (a) the magnetic field strength |B|, (b) the electric field strength |E|, (c) the direction of B and (d) the direction of E on the z = 0 plane, (e) the y component of the magnetic field By and (f) the y component of the electric field Ey on the y = 0 plane at t = 4.78 ps.
根据以上三维PIC模拟结果, 我们发现在对穿等离子体的Weibel不稳定性演化过程中, 无论是饱和前的线性增长阶段还是饱和后的非线性发展阶段, 自生电场和磁场均具有二维各向同性随机分布的特征. 3.质子束照相的数值模拟基于PIC模拟给出的电磁场三维分布数据, 本文采用径迹追踪法分别模拟了三种情况下的质子束照相过程: 即只考虑电场, 只考虑磁场, 以及同时考虑电场和磁场. 在径迹追踪法模拟中, 本文使用了动能为20 MeV平行质子束作为探针. 当t = 1.06 ps时, 三种情况下探测器上的质子束通量密度扰动的分布δn/n0如图6所示, 其中δn = n–n0, n为电场或者磁场不为零时的质子通量密度分布, n0为电场或者磁场为零时的质子通量密度分布. 此时, 探测器到场区域的距离LD = 0.5 mm. 从图6可见, 当只有电场时, 引起的密度扰动的最大值达到(δn/n0)max = 28.1, 但当只有磁场时, 引起的密度扰动的最大值(δn/n0)max只有约0.4, 远小于电场偏转引起的密度扰动. 而且, 无论有没有磁场, 探测面上的密度扰动信息几乎没有发生改变. 模拟还发现, 即使改变探测器距离LD为0.1 mm, 只考虑电场时的最大密度扰动(δn/n0)max = 1.2, 仍然远大于只考虑磁场时的(δn/n0)max = 0.2. 这说明, 在对线性演化阶段的Weibel不稳定性进行质子束照相时, 相比于电场而言, 磁场对探针质子束的偏转作用可以忽略不计. 此外, 因为线性发展阶段电磁场变化较快, 在实验上对此时的Weibel不稳定性进行质子照相时, 探针质子束穿越等离子体区域时感受到的其实是电场和磁场偏转作用的时间累加效果, 这种运动模糊效应将引起图6(a)—(c)中δn/n0空间分布的模糊化和(δn/n0)max的下降. 为了规避运动模糊效应带来的影响, 我们同样观察了t = 4.78 ps时的质子照相情况. 如图3所示, 此时Weibel不稳定性进入非线性区, 电场和磁场变化非常缓慢, 运动模糊效应可被忽略不计. 图 6t = 1.06 ps时, (a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息 Figure6. Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 1.06 ps.
当t = 4.78 ps时, 三种情况下探测器上的质子束通量密度扰动的分布δn/n0如图7所示. 因为此时电磁场相比于t = 1.06 ps时均较弱, 所以为了清晰地观察此时电磁场引起的密度扰动, 已将探测器到场区域的距离增大到LD = 2 mm. 由图7可见, 与t = 1.06 ps时一样, 电场引起的质子束通量密度扰动最大值((δn/n0)max = 8.8)远大于磁场引起的质子束通量密度扰动最大值((δn/n0)max = 1.5), 而且磁场存在与否同样不会对探测面上的质子通量密度扰动产生明显影响. 这说明, 在对非线性阶段的Weibel不稳定性进行质子束照相时, 拍摄到的仍然只是电场的信息, 磁场的分布信息并不会被反映在探测器上. 图 7t = 4.78 ps时(a)只考虑电场E、(b)只考虑磁场B以及(c)同时考虑电场E和磁场B三种情况下探测面上的质子通量密度扰动分布信息 Figure7. Proton flux density perturbations on the detection plane when (a) only the electric field is included, (b) only the magnetic field is included and (c) both the electric and magnetic fields are included at t = 4.78 ps.