1.Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China 2.School of Physics and Electronic Engineer, Shanxi University, Taiyuan 030006, China 3.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
Fund Project:Project supported by the Shanxi 1331 KSC and 111 Project, China (Grant Nos. 1331KSC, D18001) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D011009).
Received Date:25 January 2019
Accepted Date:28 May 2019
Available Online:01 September 2019
Published Online:05 September 2019
Abstract:Rabi model is a popular model in quantum optics and describes a two-level system coupling to a quantum resonator. The fruitful physics appears when the coupling strength is comparable to the frequency of the resonator. We investigate the Bose gases of Raman induced spin-orbit coupling with an external harmonic trapping. Using the displacement Fock state in quantum optics we seek for an approximate ground state. We find the superposition state of left and right displaced oscillator state with odd parity has lower energy than the displaced state itself. Besides, we study the time evolution of both the momentum and the position of the system at single particle level to demonstrate the Zitterbewegung oscillating characteristics, which present an intuitive physical picture and are in qualitative agreement with the relevant experimental results. The results are useful to study the Rabi model in deep-strong coupling regime, the model that is difficult to realize in today’s experiment based on the high controllability property of laser, and these results are also instructive for the cold atom physics field. Keywords:Rabi model/ spin-orbit coupling/ Zitterbewegung oscillations/ displacement Fock state/ variational method
这里${\eta _{ \pm ,0}} = \sqrt {1 \mp \varepsilon {{\rm{e}}^{ - 2\alpha _0^2}}} $是归一化系数, $\left| {{\psi _{{\rm{0,}}\,{\rm{L}}}}} \right\rangle \,$和$\left| {{\psi _{0,{\rm{R}}}}} \right\rangle $在一般不正交(见(20), (22)式). 计算证明可得若(13)式成立, 就有$\left\langle {{\varPhi _{ - ,0}}} \right|H\left| {{\varPhi _{ - ,0}}} \right\rangle < E\left( {{\alpha _0},{\theta _0}} \right)$成立(见图1), 因此, $\left| {{\varPhi _{ - ,0}}} \right\rangle $是系统基态更好的近似. 为保证波函数具有确定的宇称, 定义 图 1 简并量子态$\left| {{\psi _{N{\rm{,L}}\left( {\rm{R}} \right)}}} \right\rangle $能量${E_{N,{\rm{L/R}}}}$与左右平移奇宇称叠加态$\left| {{\psi _{ - ,N}}} \right\rangle $能量${E_{ - ,N}}$随SO耦合强度$\lambda $的变化 可见$N = 0$叠加态$\left| {{\psi _{ - ,0}}} \right\rangle $能量最低, 更接近基态; 而对于激发态$N \ne 0$, 二者能量随参数变化出现交叉; 相关参数取值为$\varOmega \; = \;{\rm{1}}{\rm{.4}}\omega $, 与文献[19]精确解的结果基本一致 Figure1. The energies of degenerate quantum states $\left| {{\psi _{N{\rm{,L}}\left( {\rm{R}} \right)}}} \right\rangle $ and the superposition state of odd parity $\left| {{\psi _{ - ,N}}} \right\rangle $ of left(right)-displaced number states varies as the spin-orbit coupling strength $\lambda $. It is seen that for $N = 0$, the superposition state has the lowest energy which is the best approximation for the ground state in our interest. And for the cases of $N \ne 0$, the energies of the two quantum states have pitchforks.The relevant parameters is Ω=1.4 and the results are in agreement with those in Ref.[19].
在(25)式中忽略了${{\rm{e}}^{ - 2\alpha _0^2}}$的高阶幂次. 可以看出在初始时刻$t = 0$时, 初态动量分布主要位于左侧(振子相干态$\left| {{\alpha _0}} \right\rangle $); 而在时刻$t = {{\text{π}}/{\Delta\omega }}$时, 动量分布主要位于右侧(振子相干态$\left| { - {\alpha _0}} \right\rangle $); 在时刻$t = {{\text{π}}/({2\Delta \omega })}$, 原子动量概率分布呈双峰分布, 对应于两个相干态的叠加, 这是标准的隧穿运动, 与经典双势阱完全类似. 图2和图3分别给出了粒子在动量空间和坐标空间概率分布的动态特性, 由(23)式的近似值计算得出, 在这里我们取$\varOmega \; = \;{\rm{3}}\omega $和$ \lambda \; = \;{\rm{2}}\omega $. 可以清楚地看到原子质心动量和空间位置分布的特征隧穿行为, 即所谓 Zitterbewegung振荡. 图 2 原子动量分布概率的粗粒动力学演化 (3D, 左侧; 2D, 右侧) 相关参数取值为$\varOmega \; = \;{\rm{3}}\omega $, $ \lambda \; = \;{\rm{2}}\omega $, 初态为$\varPsi (t = 0) = {\psi _{0,{\rm L}}}$, 动量$ \tilde p = \sqrt {1/m\hbar \omega } p $ Figure2. The coarse dynamics evulution of momentum distribution of single particle (left for 3D; right for 2D) with $\varOmega \; = \;{\rm{3}}\omega $ and $ \lambda \; = \;{\rm{2}}\omega $. The initial state is set as $\varPsi (t = 0) = {\psi _{0,{\rm{L}}}}$. Momentum $\tilde p$ is defined by $ \tilde p = \sqrt {1/m\hbar \omega } p $.
图 3 原子空间位置分布概率的粗粒动力学演化(3D, 左侧; 2D, 右侧) 相关参数取值及初态同图2, 位置$ \tilde q = \sqrt {m\omega /\hbar } q $ Figure3. The coarse dynamics evolution of position distribution of single particle (left for 3D; right for 2D) with the same parameters and the initial state in Fig. 2 and $ \tilde q = \sqrt {m\omega /\hbar } q $.
另外两组分原子布居差${\sigma _z}$的期望值$\left\langle {{\sigma _z}} \right\rangle = \sin {\theta _0}\cos \left( {\Delta \omega t} \right)$描述了原子的极化率的动力学. 图4显示了原子极化$\left\langle {{\sigma _z}} \right\rangle $随时间的演化, 可以看到$\left\langle {{\sigma _z}} \right\rangle $在1和–1之间周期振荡. 图 4 原子极化$\left\langle {{\sigma _z}} \right\rangle $随时间演化初态为$\varPsi \left( {t = 0} \right) = {\psi _{0,{\rm{L}}}}$, 参数取值为$\varOmega \; = \;{\rm{3}}\omega $和$ \lambda \; = \;{\rm{2}}\omega $, 时间以因子${{2{\text{π}}}/{\Delta \omega }}$标度 Figure4. Time evolution of $\left\langle {{\sigma _z}} \right\rangle $ with the initial state being $\varPsi \left( {t = 0} \right) = {\psi _{0,{\rm{L}}}}$ and the parameters $\varOmega \; = \;{\rm{3}}\omega $ and $ \lambda \; = \;{\rm{2}}\omega $. The time is scaled by the tunneling period $2{\text{π}}/\Delta\omega $.