1.Key Laboratory for Microstructural Material Physics of Hebei Province, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China 2.College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 11874273) and the Natural Science Foundation of the Hebei Higher Education Institutions of China (Grant No. ZD2018015).
Received Date:29 December 2018
Accepted Date:14 June 2019
Available Online:01 September 2019
Published Online:05 September 2019
Abstract:As the demand for electronic devices increases continually, the spintronic materials have played an important role in materials science and electronics. Spintronic devices have excellent properties such as non-volatility, low power consumption, and high integration compared with conventional semiconductor devices. In this paper, we investigate the electronic structure, magnetic and optical properties of the semiconductor GaSb doped with 3d transition metal Cr, based on first-principles calculations. The compounds are constructed by replacing some Ga atoms with Cr in zinc-blende GaSb semiconductor, where the concentrations of the Ga atoms replaced are 0, 0.25, 0.50, and 0.75. We adopt the projected plane wave method and the electronic exchange correlation functional PBE in the generalized gradient approximation. Band gap is modified by Heyd-Scuseria-Ernzerhof (HSE06) functional. We study the equilibrium lattice constants of Cr-doped GaSb in zinc-blende structure at different concentrations. The energy of nonmagnetic, ferromagnetic and antiferromagnetic states at the equilibrium lattice constants are compared to identify the ground state. For Ga1–xCrxSb (x = 0.25, 0.50, 0.75), we find that the most stable state is ferromagnetic state. In the electronic structure of the ground state, the spin-up bands pass through the Fermi level while the spin-down bands each have a direct band gap. The Ga1–xCrxSb exhibit ferromagnetic half-metallic properties. The magnetic properties at different lattice constants under different concentrations are studied. Our analysis indicates that the Ga1–xCrxSb have integer Bohr magnetic moments of 3.0, 6.0, 9.0 μB for x = 0.25, 0.50 and 0.75, respectively. We find that when the lattice changes fom –5% to 20%, the total magnetic moment for each of Ga1–xCrxSb still remains the integer Bohr magnetic moment, and the magnetic moment of the Cr increases with the lattice constant increasing. We also find that the ferromagnetisms of Ga1–xCrxSb have Curie temperatures above room temperature, estimated by mean-field method. The p-d electron hybridization occurs in Cr-3d orbital and Sb-5p orbital, and the electron state density distribution of Cr-3d is transferred, that is, the electron orbital hybridization makes the total electron state density of crystal material redistributed, which is the main reason why Ga1–xCrxSb (x = 0.25, 0.50, 0.75) present ferromagnetic half-metallic properties. Additionally, the Ga1–xCrxSb have good absorption ability in the infrared region, compatible with zinc-blende semiconductors such as GaSb, which makes Ga1–xCrxSb have promising potential applications in both spintronic devices and infrared optoelectronic devices. Keywords:first-principles/ Cr ion implantation/ electronics structure/ optical properties
全文HTML
--> --> --> -->
3.1.磁性质
计算了在不同浓度Cr离子注入下ZB Ga1–xCrxSb (x = 0.25, 0.50, 0.75)材料的电子基态性质[57]. 对于离子注入体系的铁磁态 (ferromagnetic, FM)、反铁磁态 (antiferro- magnetic, AFM)的计算, 主要是通过使偶数的Cr原子自旋呈现平行、反平行、交叉反平行来实现的, 我们在替换原子后的闪锌矿结构晶胞基础上扩为$ \sqrt {\rm{2}} \times \sqrt {\rm{2}} \times {\rm{1}}$的超胞, 并考虑结构对称性后分析磁序排列, 图2(d)为替换了75%的Ga后的铁磁态及两种反铁磁态. 蓝色和红色箭头分别表示Cr原子的上、下自旋方向. 图2(a)—图2(c)展示了不同浓度Cr离子注入下的Ga1–xCrxSb三种磁性态对应的能量体积曲线 (E -V)图. 从图中可以看出, 铁磁态的能量随体积变化的曲线都低于反铁磁和非磁的曲线[58,59]. 因而, Ga1–xCrxSb处于平衡晶格常数时, 体系在铁磁态的总能量最低, 结构最稳定. 图 2 晶体Ga1–xCrxSb (x = 0.25, 0.50, 0.75)结构优化的能量-体积关系图 (a) Ga0.75Cr0.25Sb; (b) Ga0.5Cr0.5Sb; (c) Ga0.25Cr0.75Sb; (d) Ga0.25Cr0.75Sb的铁磁态及两种反铁磁性磁序分布 Figure2. The energy-volume curve of Ga1–xCrxSb (x = 0.25, 0.50, 0.75): (a) Ga0.75Cr0.25Sb; (b) Ga0.5Cr0.5Sb; (c) Ga0.25Cr0.75Sb; (d) the FM is ferromagnetic state and AFM stands for two types of antiferromagnetic state for Ga0.25Cr0.75Sb.
在Ga1–xCrxSb (x = 0.25, 0.50, 0.75)计算中发现, 当处于平衡晶格常数时, 它们的总磁矩为玻尔磁子μB的整数倍, Ga1–xCrxSb (x = 0.25, 0.50, 0.75)的整数总磁矩分别为3.0μB, 6.0μB, 9.0μB, 这一特性符合铁磁半金属的性质. 如图3所示为这三种铁磁半金属材料的磁矩随晶格常数变化在 ± 20%的关系, 我们发现总磁矩主要由Cr原子上d轨道贡献, 额外的贡献来自于位于Cr其他轨道和邻近的Sb原子的p轨道, 且Cr和Sb贡献的磁矩方向相反. 在 –5%—20%的晶格变化范围内, Ga1–xCrxSb总磁矩仍然保持μB整数倍不变, 而Cr-d轨道的贡献磁矩随着晶格常数的增加而增大, 并在达到平衡晶格常数后, 增大趋势减缓[60]. 图 3 Ga1–xCrxSb单胞总磁矩及Cr-d轨道和Sb-p轨道贡献磁矩随晶格变化图 同一颜色的表示是同一浓度材料, 线上的方块、三角、圆形分别表示总磁矩、Cr原子d轨道贡献磁矩和Sb原子p轨道贡献磁矩 Figure3. The total magnetic moment per formula and the contribution of magnetic moment from Cr-d and Sb-p orbits as a function of the relative change of lattice constant of Ga1–xCrxSb. The same color represents the same concentration. The square, triangle and circle on the line represent the total magnetic moment, the contribution magnetic moment of the Cr atom d-orbit, and the magnetic moment of the Sb atom p-orbit, respectively.
表1Ga1–xCrxSb (x = 0, 0.25, 0.50, 0.75, 1.00)总磁矩Mtot/NCr, Cr原子d轨道磁矩MCr, Sb原子p轨道磁矩MSb, 居里温度, 其中SM表示半导体, HMF表示半金属铁磁体 Table1.Ga1–xCrxSb (x = 0, 0.25, 0.50, 0.75, 1.00) magnetic moment Mtot/NCr, Cr atom d-orbit magnetic moment MCr, Sb atom p-orbit magnetic moment MSb, Curie temperature, SM and HMF represent semiconductor and half-metal ferromagnetic, respectively.
表2Ga1–xCrxSb (x = 0, 0.25, 0.50, 0.75, 1.00)系列晶体各项性质, a0表示平衡晶格常数, LCS表示Cr—Sb键长, LGS表示Ga—Sb键长, HMHSE表示用HSE方法得到的半金属能隙(eV), HMPBE表示用PBE方法得到的半金属能隙(eV), SMHSE表示用HSE方法得到的半导体能隙(eV), SMPBE表示用PBE方法得到的半导体能隙(eV) Table2.Crystals Properties of Ga1–xCrxSb (x = 0, 0.25, 0.50, 0.75, 1.00), the equilibrium lattice constant a0, Cr—Sb bond length LCS, Ga—Sb bond length LGS, the half-metal gap (eV) calculated by HSE HMHSE, denotes the half-metal gap (eV) calculated by PBE HMPBE, the semiconductor gap (eV) calculated by HSE SMHSE, and the semiconductor gap (eV) calculated by PBE SMPBE.
计算得出半导体GaSb处于平衡晶格常数时Ga—Sb的键长为2.638 ?, 对比该系列铁磁半导体材料中各原子之间的键长, 如表2中所列, 可以看出, 离子注入过渡金属Cr后, 由于电负性差异和各原子间电子轨道杂化, Ga1–xCrxSb中Cr的最外层轨道电子在键合中被消耗. 因为在元素周期表中Cr的离子半径(0.615 ?)和电负性(1.66)小于Ga的离子半径(0.620 ?)和电负性(1.88). 所以Cr—Sb的离子键键强大于Ga—Sb的离子键强, 而长度小于后者. 当GaSb中Cr的离子注入浓度增加时, 晶胞体积变小, 同时由于Sb离子的位置更加偏向Cr离子, 所以相应的Ga—Sb键长变长了, 而Cr—Sb键长随浓度变化不大. 由表2可以看出, HMF Ga1–xCrxSb (x = 0.25, 0.50, 0.75, 1.00)的半导体带隙和半金属能隙都随浓度增大而增大. 半金属材料的半金属能隙(half- metal gap HM gap)是在存在带隙的自旋子能带中, 费米能距离价带顶或导带底这二者中间最小值[68]. 为了进一步研究该系列HMF材料出现半金属性质的原理, 因为Ga1–xCrxSb (x = 0.25, 0.50, 0.75)电子态密度比较相似, 所以选取Ga0.75Cr0.25Sb总态密度(total density of states, TDOS)和各原子分波态密度 (partial density of states, PDOS)为例进行分析, 为了更清晰地比较分析, 图5(a)和图5(b)分别为GaSb和Ga0.75Cr0.25Sb的电子态. 从图5(a)可以看出GaSb电子态无自旋极化, 所以GaSb没有磁性. 而Ga0.75Cr0.25Sb在费米面附近上自旋的态密度呈金属性, 而下自旋态有一明显带隙呈现半导体性, 所以Ga0.75Cr0.25Sb表现出磁性. 由于在Ga0.75Cr0.25Sb的费米能级处只存在一种自旋取向的电子, 由自旋极化率的定义 图 5 晶体电子态密度图 (a) GaSb; (b) Ga0.75Cr0.25Sb Figure5. Total electron density states of (a) GaSb; (b) Ga0.75Cr0.25Sb.