Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 21674078).
Received Date:27 March 2019
Accepted Date:10 June 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:Self-propelling motionisubiquitous in the biological world, ranging from the molecular-level transportation of motor proteins along the microtubules, to the swimming of bacteria on a micrometer scale. An intriguing topic is to design microdevices or micromotors that can rectify the random motion and convert the energy into mechanical work. Here we design a soft microdevice, which may possess the advantages such as damage resistance, durability and adaptability, by utilizing two-dimensional Langevin dynamics simulation. We use a flexible chain to mimic the soft boundary of microdevice. We investigate the dynamical behaviors of microdevice when it is immersed in a thin film of active particle suspension. We find that the microdevicecan rotateunidirectionally and hence output the work. To uncover the physical mechanism of unidirectional rotation, we calculate the pressure distribution along the soft boundary. The spontaneous symmetry breaking of flexible boundary is the origin of the unidirectional rotation, which can lead to the inhomogeneous pressure distribution and hence torque on ratchet. It is because the persistent motion drives the particles to accumulate near the boundary and induce the soft boundary to deform. Further, we focus on the effect of active force and particle density on the angular velocity. With the increase of active force, the average angular velocity increases monotonically due to the increase of torque. With the increase of the number density of active particles, the average angular velocity increases. This is because the aggregation of a large number of particles is beneficial to the increase of ratchet torque. Additionally, we pay attention to the effect of rotational diffusion rate, Dr, of active particles and the number of ratchet wheels. We find the average angular velocity decreases with the increase of rotation diffusion Dr because ofthe ability of particles to weakly accumulate at high Drs. The average angular velocity also decreases with the increase of the number of ratchet wheels. This is because a large number of ratchet wheels weaken the asymmetry of pressure distribution and hence reduce the torque on wheel. Our work provides a new insight into the design of soft microdevices for studying the non-equilibrium system. Keywords:soft boundary/ directional rotation/ ratchet wheel/ molecular dynamics
其中, 弹性系数取k = 5000 ε/σ2, 为了防止活性粒子穿过柔性链, 平衡键长取r0 = 0.25σ, 由键连接的近邻珠子之间的对相互作用被忽略. 棘轮由柔性链结构和刚性支架组成. 柔性链的初始构型为圆形, 半径R0 ≈ 50σ. 链到圆心由刚性支架连接, 结构类似于自行车轮. 四支架体系, 初始结构示意图如图1. 图 1 棘轮在活性粒子浴中(绿色部分)的初始示意结构 虚线部分表示刚性支架, 红色表示柔性边界, 左上部分绿色粒子中的黑色箭头表示活性粒子的推进力方向, 右上部分为一段边界上的粒子排布, 粒子间间距为0.25σ Figure1. The initial structure of flexible boundary (red) in the active particle bath (green). The dashed lines represent four rigid trestles. The black arrow in the green particle indicates the active force direction of the active particle in the upper left. The upper right part is the particle arrangement on a boundary. The spacing between the particles is 0.25σ.
体系中的活性粒子遵循郎之万动力学, 其运动方程可以表示为:
$m{{\ddot{{r}}}_{{i}}} = - \nabla U - \gamma {{\dot{{r}}}_{{i}}} + F{{\hat{{\mu }}}_{{i}}}\left( t \right) + \sqrt {2{\gamma ^2}{D_0}} {\eta _i}\left( t \right),$
${\dot \theta _i} = \sqrt {2{D_{\rm{r}}}} {\xi _i}\left( t \right),$
首先考察了支架数为Ns = 4, 活性粒子的数密度为φ = 0.025、旋转扩散系数取Dr = 0.0001、驱动力F = 40时棘轮的转动行为(见附属材料中的视频F = 40.avi). 如图2(a)所示, 当棘轮处于活性粒子浴中会发生定向旋转的现象. 图 2 (a)四支架棘轮随时间转动的示意图, 图示中刚性支架被忽略, 左上图黑点代表棘轮质心, 其中黑色箭头表示从质心到一支点的方向以此表明棘轮发生转动, 右下图是该情况下的旋转角度与角速度随着时间的变化曲线图; (b)上图为棘轮柔性边界的曲率分布图, 下图为压力分布图, 其中棘轮支架数为Ns = 4, 活性粒子的数密度为φ = 0.025, 旋转扩散系数取Dr = 0.0001, 驱动力F = 40 Figure2. (a) Schematic diagram of the ratchet rotation with time for Ns = 4, φ = 0.025, Dr = 0.0001, F = 40. The black dot on the top left figure represents the center of mass of the ratchet; the black arrows denote the orientation from the center of mass of ratchet to the fixed point of boundary to indicate the rotation of the ratchet. The right-down figure shows the time evolution of angle and angular velocity of ratchet. (b) The curvature distribution (up) of boundary and the pressure distribution (down) around it
接下来研究转动速度和驱动力之间的关系. 选取了支架数为Ns = 4的棘轮, 体系中活性粒子的数密度为φ = 0.025, 其中φ = σ2Np/4R02. 如图3(a)所示, 随着活性力的增加, 棘轮的平均旋转角速度单调增加. 图3(b)是体系进入稳态后在不同活性力的作用下, 棘轮的瞬时旋转角速度. 从图3(b)中可以看出, 当活性力较小时(F = 20)棘轮的旋转角速度较小且瞬时角速度有正有负, 棘轮的旋转方向不固定. 随着活性力的进一步增加(从F = 20增大到F = 80), 棘轮上聚集的活性粒子增多且扭矩也会变得越来越大, 从而实现定向转动. 通过图3也可以发现, 棘轮的瞬时角速度涨落随驱动力的增大而在一定程度上增大, 这是因为驱动力增大, 粒子运动速度较快, 粒子碰撞棘轮时, 对棘轮的扰动性增强. 图 3 支架数为4、不同活性力的作用下, 棘轮的旋转角速度 (a)平均角速度, (b)瞬时角速度, 误差棒表示平均角速度的标准方差 Figure3. (a) Average angular velocity and (b) instantaneous angular velocity for the four rigid trestles with various active forces. The error bars represent the standard the deviations of angular velocity of rigid trestles.
23.3.密度效应 -->
3.3.密度效应
在我们之前的工作中[20]发现囊泡内的活性粒子的非均匀分布会对囊泡的形状产生一定的影响, 且囊泡的形状与活性粒子的密度成正相关关系[27]. 那么对于本文所模拟的体系, 活性粒子的密度也势必会对柔性边界有一定影响, 且可能会对棘轮的旋转有促进或者抑制作用. 为了更好地验证我们的设想, 在模拟过程中我们保持活性粒子的旋转扩散系数为Dr = 0.0001, 活性粒子施加的驱动力选取F = 80, 研究不同粒子数密度φ下棘轮的旋转角速度的变化. 从图4中可以看出, 随着活性粒子数密度的增加, 棘轮的角速度也增加, 由此可以理解为棘轮的转动速率随着活性粒子数密度的提高而提高. 从图中可以直观地看出, 当活性粒子的数密度较小时, 活性粒子浴中活性粒子的集聚效果没有粒子数密度大时明显(图4插图). 大量粒子的聚集有利于棘轮扭矩的增加, 进而增加角速度. 因边界周围凹陷区域聚集的数目有限, 从图中可以看出, 随着粒子数密度的增加, 角速度增幅降低; 大量的增加粒子数密度, 可能出现饱和现象. 图 4 棘轮的平均角速度与粒子数密度之间的关系, 内部两张插图分别对应活性粒子密度φ = 0.025和φ = 0.1, 误差棒表示平均角速度的标准方差 Figure4. Average angular velocity vs the number density of active particles. The insets are typical snapshots for φ = 0.025 and φ = 0.1. The error bars represent the standard the deviations of angular velocity.
23.4.旋转扩散系数效应 -->
3.4.旋转扩散系数效应
研究过程中, 我们把旋转扩散系数Dr作为可调参数来探究其对棘轮转动速率的影响[23]. 在模拟时, 为了便于观察, 给活性粒子施加的驱动力取较大的一组F = 80. 得到不同Dr下棘轮的旋转角速度与时间的关系图, 如图5(a)所示. 图 5 (a)不同旋转扩散系数Dr下棘轮的旋转角速度与时间的关系; (b)平均旋转角速度与Dr的关系, 内部两插图分别对应旋转扩散系数Dr = 0.0001和Dr = 0.01, 误差棒表示平均角速度的标准方差 Figure5. (a) The angular velocity as a function of time for various rotational diffusion coefficients, Drs. (b) The average angular velocity as a function of Dr. The insets are typical snapshots for Dr = 0.0001和and Dr = 0.1. The error bars represent the standard the deviations of angular velocity.
最后考虑支架数对棘轮旋转速率的影响. 因为活性力较小时棘轮的旋转方向不固定, 为了避免棘轮的旋转方向对研究结果的影响, 选取活性力为F = 80的情况. 图6为棘轮旋转角速度的平均值与棘轮支架数的影响, 从图像中可以直观地看出, 在活性力一定时, 棘轮的旋转角速度随着支架数的增大而减小. 当支架数增加时, 凹陷区增加, 大量粒子或聚集到这些区域, 减弱了粒子分布的不均匀性(图6插图), 进而使扭矩降低, 从而引起转动角速度下降. 图 6 棘轮的平均角速度与支架数之间的关系, 内部两插图分别对应支架数为4和6, 误差棒表示平均角速度的标准方差 Figure6. The average angular velocity of ratchet vs the number of rigid trestle. The insets are typical snapshots for the number of ratchet wheel. The error bars represent the standard the deviations of angular velocity.