1.School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China 2.National Key Laboratory of Solid Microstructure Physics, Nanjing University, Nanjing 210093, China
Fund Project:Project supported by the National Laboratory of Solid State Microstructures, China (Grant No. M31041), the National Natural Science Foundation of China (Grant No. 11847002), and the Natural Science Foundation of Anhui Province, China (Grant No. 1908085QA21).
Received Date:02 March 2019
Accepted Date:18 April 2019
Available Online:01 August 2019
Published Online:05 August 2019
Abstract:Surface plasmons include surface plasmon polaritons and localized surface plasmons, which are electromagnetic wave confined at the interface of the metal and dielectric. Spoof surface plasmonic structure has many special optical properties, which is of great significance for designing new-generation optical elements. In order to transfer the features of the surface plasmon polaritons and localized surface plasmons to microwave-terahertz region, Pendry et al. (Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science305 847) have proposed the spoof surface plasmon polaritons based on a metal structure with grooved stripes. In this paper, a hollow textured perfect electric conductor cylinder with periodic cut-through slits structure is designed to suppress the light scattering of the object in any direction and achieve the effect of omnidirectional cloaking while the transverse magnetic polarization wave propagates along the x direction. And the locations of the electrical and magnetic modes can be freely modulated by tailoring the structural geometric construction. In order to find the physical mechanism behind the abnormal phenomenon, through theoretical analysis and numerical simulation, we find that the strong scattering suppression of this spoof surface plasmonic polariton structure is caused by the interference between the background wave and Mie scattering of the structural unit, and it can be equivalent to a ring metamaterial due to the special structural design, in order to achieve the omnidirectional cloaking. It implies that we can hide objects in metal strips due to the fact that the metal in the microwave-to-terahertz region is equivalent to a perfect electrical conductor. This opens up a new way to analyzing the physical cloaking and optical response of spoof surface plasmonic polaritons structure. In addition, we also analyze the influence of the structure on the movement law of the scattering spectrum under different structural parameters. This enables us to have an in-depth understanding of the influence of structural parameters on the structural scattering spectrum. Our results can be applied to the microwave-to-terahertz region and a variety of advanced optic devices such as radars, cloaking coatings, sensors and detectors. Keywords:spoof surface plasmonic polaritons/ metamaterial/ structural scattering/ omnidirectional cloaking
全文HTML
--> --> -->
3.结构的电磁响应此结构的电磁响应可以通过计算散射截面得到精准的描述. 图2(a)给出了以频率为变量的人工局域表面等离激元共振结构的归一化散射截面谱, 散射截面被归一化至结构半径R. 在基于数值计算的基础上, 图2(a)给出了r = 0.1 m, R = 0.6 m时结构的总散射截面. 由图2(a)可以发现, 结构的散射谱中有许多共振峰, 为了进一步探究峰之间的区别, 将总散射谱分为两大区域, 蓝色区域的峰为低阶共振模式, 红色区域的峰为高阶共振模式. 散射谱中低阶与高阶模式中出现不对称的峰主要是由于空心人工局域表面等离激元结构的共振波与背景场相干产生的[30]. 为了进一步确认这些共振峰的模式, 给出了低阶区域中三个共振峰的近场分布Hz, 如图2(b)—图2(d), 可以发现从左到右分别对应着磁偶极模式、电偶极模式和电四极模式三个共振峰. 图 2 (a)计算的空心人工局域表面等离激元结构的散射谱, 其中浅蓝色区域代表低阶模式, 砖红色区域代表高阶模式; (b)?(d)低阶模式区域中三个共振峰的场分布, 分别对应于磁偶极模式、电偶极模式和电四极模式 Figure2. (a) Calculated scattering cross section spectrum for the textured perfect electric conductor hollow cylinder. The light blue and brick red area represent the lower and higher order mode, respectively. (b)?(d) The field distribution of three resonant peaks in the lower mode region correspond to magnetic dipole mode, electric dipole mode and electric quadrupole mode.
此外, 还研究了人工局域表面等离激元的结构参数对共振产生的影响, 分别研究了改变结构内半径r (图3(a))、外半径R (图3(b))、裂缝宽度和周期的比值a/d (图3(c))以及折射率n (图3(d))对等离激元结构共振峰移动产生的影响. 从图3(a)可以发现, 当裁剪结构内半径r从0.1 m增至0.2 m时, 这种带有金属波纹空心硅盘结构的共振峰会发生蓝移现象, 而当调节结构的外半径R从0.6 m增至0.7 m时, 结构的共振峰则会发生红移现象. 这是由于超构材料不仅对电场响应, 而且对磁场也响应, 所以当结构尺寸减小时电偶极模式和磁偶极模式都会发生蓝移. 如图3(c)所示, 当裂缝和周期的比值a/d从0.2改变至0.4时, 结构的散射谱会发生轻微的红移现象. 此外, 在图3(d)中还研究了电介质材料折射率对结构共振峰的影响, 发现随着折射率的变大结构的共振峰发生了红移. 这些研究结果表明, 通过裁剪结构的几何参数和调节相关材料, 可以灵活地调节人工局域表面等离激元结构共振峰的移动. 为了更加深入地了解空心的人工局域表面等离激元结构的共振响应, 应用电磁超构材料的概念给出了模拟空心人工局域表面等离激元结构散射截面的解析方程. 如图1(c)所示, 该结构可以看作一个TM极化平面波入射的厚度为R–r的空心超构材料圆柱, 所述超构材料的有效参数可以表示为[31] 图 3 计算的形变的具有完美电导体纹理的空心硅盘结构的散射谱 (a)改变内半径从0.1 m至0.2 m; (b)改变外半径从0.6 m至0.7 m; (c)裂缝a和周期d的比值从0.2至0.4; (d)电介质折射率大小从3改变至5 Figure3. Calculated scattering cross section of the textured perfect electric conductor hollow cylinder for changing: (a) Changing the inner radius from 0.1 m to 0.2 m; (b) outer radius from 0.6 m to 0.7 m; (c) the rations between the width of slit a and period d from a/d = 0.2 to a/d = 0.4; (d) the refractive index of the dielectric from n = 3 to n = 5.