1.School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi’an 710121, China 2.Key Laboratory of Underwater Information and Control, China Shipbuilding Industry Corporation 705 Research Institute, Xi’an 710077, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61805199), National Defense Science and Technology Innovation Special Zone Project, China (Grant No. 18-H863-01-ZT-001-004-02), and the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JQ6065).
Received Date:29 March 2019
Accepted Date:07 May 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:Pulse position modulation (PPM) technology combined with the system of wireless optical communication received by the photon detector has the advantages of high energy efficiency and strong anti-interference capability. This technology has received extensive attention in the field of underwater wireless optical communication (UWOC) system. Affected by ocean turbulence, the UWOC system will produce the intensity fluctuations, leading the system performance to degrade. The Gamma-gamma intensity fluctuation probability model, which is a two-parameter model, possesses a wide range of applications. It can describe weak, medium and strong fluctuation in light intensity statistics. In this paper, firstly, based on the relationship between the weak atmospheric turbulent spherical wave scintillation index and the weak ocean anisotropic turbulent spherical wave scintillation index, the equivalent structural parameter expressed by both ocean turbulence parameters and anisotropy factor is derived. Then, using the structural parameter combined with the gamma-gamma turbulence channel and the asymptotic Rytov theory, the bit error rate (BER) under anisotropic ocean turbulence is calculated based on the BER formula of the PPM communication system. Finally, numerical simulations are carried out to analyze the ocean turbulence parameters, the average avalanche photodiode (APD) gain, the PPM modulation order, the data bit rate, and the influences of transmission distance on the BER under different anisotropic ocean turbulences. The results indicate that the negative effect of turbulence becomes stronger with increasing the ratio between the contributions of temperature and salinity to the refractive index spectrum, the dissipation rate of mean-squared temperature, data bit rate, and propagation distance. As the viscosity coefficient increases, the BER decreases. When the isotropic ocean turbulence and the anisotropy factors are very small, the increase of the rate of dissipation of kinetic energy per unit mass of fluid will result in a decrease in BER. When the turbulent environment anisotropy is further strengthened, the BER first increases and then decreases as the rate of dissipation of kinetic energy per unit mass of fluid increases. As the average APD gain increases, the BER first decreases and then increases. This trend is especially noticeable as the anisotropy factor increases. The choice of the average APD gain is important for finding the minimum value of the BER. In general, the system is more affected by salinity fluctuation than by temperature fluctuation. As the rate of dissipation of mean-squared temperature increases and the viscosity coefficient decreases, the negative effects of turbulence becomes more and more serious. When the system propagates longer distances or works at a higher data bit rate, the system is severely affected by turbulence, which limits the system operating distance and data transmission rate. However, using a smaller modulation order and choosing the right APD can conduce to improving the system performance. In addition, the PPM UWOC system can perform better when the system operates within acceptable bit error rate as the ocean turbulence environment becomes more anisotropic. This study will provide reference for the construction and performance estimation of UWOC system platform. Keywords:underwater optical communication/ bit error rate/ anisotropic oceanic turbulence/ gamma-gamma distribution
从图2可以看出, 固定各向异性因子时, $w$增大时, BER增大. 如${\mu _{x}} = 3$时, $w = - 2$, BER为$1.046 \times {10^{ - 14}}$, $w = - 1$, BER迅速增至$5.973 \times $${10^{ - 8}}$. 进一步观察发现: $w = - 1$时, 随着${\mu _x}$增大, BER从$7.703 \times {10^{ - 5}}$降至$1.975 \times {10^{ - 9}}$; 而$w = - 2$时BER下降约为9个量级. 这表明$w$减小时, 随着海洋各向异性因子增大时, BER减小的幅度明显, 这表明与盐度占主导的海洋湍流相比, 在温度占优的海洋湍流中, 各向异性对BER的影响更加明显. 当以盐度波动为主海洋湍流中, 此时系统性能恶化已经很严重, 各向异性对BER的影响相对有限. 图 2 不同的$w$时, 误码率BER随${\mu _x}$的变化曲线 Figure2. BER versus the anisotropy factor in the x direction for different values of$w$.
图3表明, 当各向异性因子恒定时, 温度方差耗散率${\chi _{\rm{T}}}$的增加, 会增大BER.如${\mu _{x}} = 3$时, ${\chi _{\rm{T}}}$从5 × 10–7 K2/s增加至5 × 10–6 K2/s, BER随之从$3.994 \times {10^{ - 11}}$增大至$4.622 \times {10^{ - 4}}$. 因为温度方差耗散率是描述湍流作用于海水温度场的一个物理量; 温度方差耗散率越大, 在受分子热传导作用下温度波动越大, 从而导致无线光通信系统性能下降. 另一方面, 当温度方差耗散率达到5 × 10–5 K2/s时, BER很大, 此时几乎不受各向异性因子的影响. 图 3 不同的${\chi _{\rm{T}}}$时, 误码率BER随${\mu _x}$的变化曲线 Figure3. BER versus the anisotropy factor in the x direction for different values of ${X_{\rm{T}}}$.
从图4可以看出当各向异性因子保持不变时, BER的值是随着分子运动黏度系数增大而减小. 这种现象可以解释为: 雷诺数Rey由流动的特征速度V、湍流场的几何特征尺寸l、运动黏度系数ν之间关系Rey=Vl/ν决定. 雷诺数物理上表示惯性力和黏滞力之比, 随着ν的增大, 雷诺数减小, 意味着海水流动时各质点间的黏性力逐渐占主要地位, 内摩擦力的作用增大, 湍流出现的扰动很快被转化内能, 湍流效应减小. 我们注意到运动黏度系数$\nu = 5 \times {10^{ - 4}}\;{\rm{m}}^2/{\rm{s}}$, 随着海洋湍流的各向异性增强, BER下降特别明显, 接近10个量级. 当运动黏度系数减小至$\nu {\rm{ = }}1 \times {10^{{\rm{ - }}4}}\;{\rm{m}}^2/{\rm{s}}$, 雷诺数增大, 湍流作用增强, 此时各向异性对BER影响作用减弱, 但随着各向异性因子增大, BER仍降低. 图 4 不同的$\nu $时, 误码率BER随${\mu _x}$的变化曲线 Figure4. BER versus the anisotropy factor in the x direction for various the kinematic viscosity$\nu $.
从图5可知, 各向同性海水中以及${\mu _{x}}{\rm{ = }}1,$${\mu _{y}} = 2$各向异性因子很小时, 随着动能耗散率的增大, BER降低. 由Kolmogorov理论, 局部各向同性统计区域中, 湍流统计特征主要主要由湍流的能量耗散决定. 此时, 越大的单位流体质量的动能耗散率, 表明湍流能量转化成分子热能越快, 对应着湍流越小. 但是, 其余三条曲线显示, 湍流环境各向异性增强时, 随着湍流动能耗散率的增加, 误码率先增大后减小, 呈现出突起性. 因为折射率功率谱在空间频率大小与湍流内尺度的乘积大约为1($\kappa {l_0} \sim 1$)时呈现一个小突起(bump)的特征, 它使得随湍流内尺度增加(减小)时, 长期光束扩展呈现先增加后减小突起特性[28]; 从另一个角度, 湍流动能耗散率与Kolmogorov内尺度${l_0}{\rm{ = }}{\left( {{{{\nu ^3}} / \varepsilon }} \right)^{{1 / 4}}}$关系不难得出, 随着湍流动能耗散率减小(增加), 长期光束扩展呈现出上升后下降突起特性, 而长期光束扩展造成接收面上光强相应的变化, 使得BER产生相应变化呈现突起特性. 图 5 不同的${\mu _x},{\mu _y}$时, 误码率BER随着$\varepsilon $的变化曲线 Figure5. BER versus the kinetic energy dissipation rate per unit fluid mass$\varepsilon $for various anisotropy factor values in the x and y directions.
图6显示了无论各向同性环境还是各向异性环境, 随着平均APD增益的增大, BER是先减小, 达到最小值, 而后增大. 这是因为当平均APD增益达到某个门限后, 噪声水平开始增加, 此时误码率增加.海洋湍流的各向异性增强时上述趋势变得更加明显. 此外, 图6还表明不同的各向异性因子, 误码率达到最小值时, 平均增益不相同. 图 6 不同的${\mu _x},{\mu _y}$时, 误码率随APD平均增益的变化曲线 Figure6. BER versus average APD gain for different anisotropy factor values in the x and y directions.
从图7可以看出BER会随着各向异性因子的增加而减小, 与光通信系统采用的调制阶数M无关. 仔细观察图7还发现采用较小的调制阶数M的系统呈现出来的BER会对各向异性因子更加敏感; 较小的调制阶数M在抵制海洋湍流影响上更加有效. 图 7 不同的调制阶数M时, 误码率BER随着${\mu _x}$的变化曲线 Figure7. BER versus the anisotropy factor in the x direction for various PPM order M.
图8仿真了BER在不同的传输速率和不同的各向异性因子的变化情况. 结果表明当系统传输比特率增大时, BER上升趋势明显. 另一方面, 各向异性因子增大会减小BER; 当系统以较小比特率运行时, 在各向异性因子起初增大时, 下降趋势明显. 图 8 BER随比特率与各向因子的变化曲线 Figure8. BER under different bit rate and anisotropy factor in the x direction.
图9则讨论了传输距离和各向异性因子对BER的影响. 当L是70 m时, BER变化范围为[7.70 × 10–5,1.98 × 10–9]; L为170 m, BER则是在[1.27 × 10–2, 1.40 × 10–3]变化; 表明传输距离变长时, 各向异性因子的增加对BER的变化不大, 且BER整体偏高, 系统性能恶化. 图 9 误码率BER随传输距离和各向异性因子的变化曲线 Figure9. BER under different propagation distance and anisotropy factor in the x direction.