1.School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China 2.The Beijing Key Laboratory of Multiphase Flow and Heat Transfer, North China Electric Power University, Beijing 102206, China
Fund Project:Project supported by the National Basic Research Program of China (Grant No. 2017YFB0601803) and the National Natural Science Foundation of China (Grant No. 51776043).
Received Date:07 March 2019
Accepted Date:10 May 2019
Available Online:01 August 2019
Published Online:20 August 2019
Abstract:Particle separation is important in industrial production. The granular powder exhibits the property that is like both fluid property and solid property, which makes it difficult to establish a mathematical model to reveal the particle motion mechanism. The fluid property of the granular powder can be partly explained by the classical fluid theory, but the solid property cannot be covered. Theories combining the fluid and solid properties are also used to explain the particle separation phenomenon. However, they are not in consensus about the granular theory to explain the particle separation mechanism. Friction dissipation, which represents the particle pairwise damp interactions, greatly influences the particle separation process. In order to understand the particle separation mechanism and the effect of friction coefficient on the particle motion, a three-dimensional discrete element model is used to simulate the separation of three-dimensional spherical binary particles in a cylindrical groove (shear cell)in this paper. Initially, the large particle is placed at the bottom and the other small particles pile into the groove. The shear flow of the particles is established by rotating the bottom plate of the groove. The large particles gradually jump to the top of the groove under the shearing action. The effect of particle friction coefficient on the separation is studied. Focusing on the characteristics of kinematics and dynamics in the jumping process of large particle, the influence of the friction coefficient on the trajectory, velocity and acceleration of particle are quantitatively analyzed. The conclusions are obtained as follows. 1) The process of large particle jumping can be divided into three stages: relaxation stage (the large particle stays at the bottom of the groove), the take-off stage (the large particle rises up), and the equilibrium stage(the large particle moves to the top and stays there). 2) The relaxation time decreases with friction coefficient increasing. 3) The equilibrium height of particles increases with friction coefficient increasing. 4) The amplitude of the force pulsation of the large particle increases with friction coefficient increasing. For the behavior analysis of the ascending motion of the large particle, we propose a neighborhood analysis method and define a floating factor. The ratio of the number of small particles arranged in the upper to that in the lower adjacent space of the large particle is defined as the buoyancy factor. It is found that the buoyancy factor drops sharply at the jumping point of the large particle, forming the opportunity for the large particle jumping. It is revealed that the take-off of the large particle is the result of both the high-frequency characteristics of force fluctuation and the steep drop of buoyancy factor. The rising motion of the big particle is determined by the force and the surrounding space. Keywords:DEM/ shear segregation/ particle dynamics/ friction coefficient
全文HTML
--> --> --> -->
2.1.物理模型
本文模拟的二元颗粒系统, 周侧固定的两个内外圆柱面和底部旋转的圆环形底盘构成, 7501颗颗粒(7500颗直径为0.002 m和1颗直径为0.003 m的球形颗粒)自由堆积在圆环槽型限域空间中, 如图1所示. 底面以一定的角速度旋转, 对槽内的颗粒群产生恒定剪切力. 圆环槽内径为0.294 m, 外径为0.317 m, 高度为颗粒群的堆积高度. 模拟系统置于重力环境, 以剪切盒的底部中心为坐标原点, 重力反方向为z轴正方向, 坐标轴设立满足右手系定则. 颗粒系统的填注方式如下: 首先将大颗粒置于剪切槽底层, 然后在容器上方随机生成小颗粒倾倒入槽, 释放完预设数目的小颗粒后再合上顶盘. 系统在重力条件下弛豫足够长时间以确保总动能稳定在较低的范围内后旋转底盘, 旋转周期为20 s. 观察大颗粒在小颗粒群中的运动特征. 图 1 三维剪切颗粒体系示意图 Figure1. Schematic diagram of shear granular system.
本文的数值模型初始时刻大颗粒在下部, 小颗粒在上部, 经过中间的掺混过程, 最终达到位置颠倒的平衡状态, 与May等[10] 的实验结果一致, 如图2所示. 验证了本文数值模型以及参数设置的可行性. 图 2 实验与模拟结果对比图 (a) May等[10]实验获得大小颗粒位置互相颠倒的现象; (b)本文的模拟结果 Figure2. Comparison between the present simulation and the previous experimental results: (a) The Brazil-nut effect phenomenon from May[10]; (b) the present numerical simulation results.
-->
3.1.大颗粒的整体运动特性
图3(a)为大颗粒三维空间位置随时间的演变过程. 由图可见, 大颗粒做逆时针旋转上升运动, 三维轨迹可以分为三个阶段: 1)定义t从0—29.92 s的时间跨度为起跳弛豫时间, 大颗粒在剪切槽底部做旋转运动, 在高度方向上变化很小, 间歇性地发生小幅度不规则跳动; 2) t = 29.92 s开始起跳上升, 起跳的过程很短, 经历3.88 s后, t = 33.8 s时刻跃升过程完成; 3)大颗粒上升到顶部, 在顶部平衡位置附近上下脉动. 图 3 摩擦系数为0.3的大颗粒运动及力学特征图 (a)大颗粒轨迹随时间演变图; (b)大颗粒x, y方向位移随时间变化图; (c)大颗粒z方向位移随时间演变图; (d)大颗粒在z方向线速度、受力以及旋转角速度随时间变化规律, 灰色条带对应起跳过程 Figure3. Characteristics of the large particle kinetics and kinematics with friction coefficient of 0.3: (a) Large particle trajectory evolution over time; (b) changes of large particle trajectory components in x and y directions with time; (c) changes of large particle trajectory components in z direction with time; (d) changes of translational velocity, force and rotational velocity with time.
针对低、中、高三种摩擦系数, 鉴别浮升因子随时间的变化过程, 其中低摩擦系数为0.35、中摩擦系数为0.49、高摩擦系数为0.55. 图7(a)—图7(c)分别描述了三种摩擦系数下颗粒起跳轨迹与浮升因子随时间变化的对应关系: 起跳前, 浮升因子的数值大于1, 大颗粒在底部; 起跳过程中, 浮升因子减小, 下部小颗粒的数目大于上部小颗粒的数目, 大颗粒获得了起跳必要的上升空间, 下部颗粒群提供了必要的底部支撑; 起跳结束, 浮升因子小于1, 大颗粒到达顶部. 由图7(a)—图7(c)可见, 大颗粒的起跳轨迹与浮升因子的突降转变点具有很好的对应关系, 在起跳时刻, 浮升因子的陡降, 大颗粒上层的小颗粒排列疏松, 为大颗粒的跃升提供至为关键的“窗口时间”. 图7(d)比较了浮升因子突降转变点随摩擦系数增大更快出现, 发现随摩擦系数的增大, 大颗粒起跳弛豫时间变短, 对应的浮升因子更快地下降到平衡状态. 图 7 起跳过程中浮升因子随时间变化图 (a)?(c)浮升因子在颗粒起跳过程中的变化规律, 摩擦系数分别为0.35 (a) 0.49 (b) 0.55 (c) 图中彩色线表示浮升因子, 黑色实线表示对应时刻颗粒高度的变化过程; (d)随摩擦系数增大浮升因子突降转变点提前 Figure7. The floating factor variation with time under the friction coefficients of 0.35 (a), 0.49 (b) and 0.55 (c). The color line indicates the floating factor, and the black line represents the z trajectory. (d) sharp decrease point of the floating factor occurs earlier with friction coefficient increment.