Abstract:All-inorganic perovskite cesium lead halides with superior stability, suitable bandgap and high absorption efficient have become a promising candidate for photovoltaic application. In all-inorganic cesium lead halide perovskites, CsPbX3 (X = Br, I) exhibits excellent photoelectric properties, which are similar to those of organic-inorganic hybrid perovskites. The CsPbI3 faces a challenge of unideal tolerant factor for perovskite phase while CsPbI3–xBrx has better tolerant factor. Among them, CsPbI2Br is one of most popular candidates because of its good thermal stability. Nevertheless, CsPbI2Br shows instability due to the phase transition caused by moisture and lower efficiency because of defects. For all inorganic perovskite devices, the alkyl chain length of surface treatment agent should be taken into account when using organic cationic passivation method. In this paper, CsPbI2Br perovskite is treated with different organic ammonium salts to enhance its phase stability. The experimental results show that α-phase CsPbI2Br is more stable with the increase of the alkyl chain length. Butylamine iodine (BAI) among three kinds of surface treating agents is proved to have the best defect passivation and phase stabilization effect. With the increase of alkyl chain length, the hydrophobicity of the organic molecular layer increases, which plays a crucial role in protecting optically active CsPbI2Br. Meanwhile, it is found that the stability of perovskite is enhanced with the concentration of the BAI solution increasing. This should be related to the organic cation termination formed on the surface of CsPbI2Br film. Solar cell devices based on the CsPbI2Br thin films treated with different concentrations of BAI are assembled and then the effect of organic ion surface treatment on the photoelectric performance of batteries is further explored. The experimental results show that when the concentration of BAI is relatively high (4 mg/mL and 8 mg/mL), the device’s photovoltaic performance decreases especially the photocurrent obviously decreases, while the post-treatment process using 2 mg/mL BAI will enhance not only the phase stability but also the photovoltaic parameters after defect passivation. Considering both humidity resistance and device efficiency, this work demonstrates that the CsPbI2Br thin film with suitable BAI treatment can improve the wet stability of perovskite, and enhance the photovoltaic performance. Keywords:inorganic perovskite solar cells/ moisture stability/ alkyl ammonium salt
对新制CsPbI2Br薄膜进行不同碳链的铵盐处理, 通过紫外-可见吸收和XRD来考察研究各不同碳链铵盐对钙钛矿薄膜结构的影响. 图1 (a)显示, 铵盐处理前后薄膜紫外可见吸收光谱没有发生改变, 均在670 nm左右有一吸收边, 是典型CsPbI2Br钙钛矿吸收峰, 说明在该过程中没有发生明显的I-Br离子交换. 图1(b)表明 EAI, PAI, BAI处理后的薄膜XRD图谱与未处理薄膜一致, 不同碳链的有机阳离子对CsPbI2Br钙钛矿处理时, 并未发生离子交换形成2D钙钛矿薄膜, 只是在钙钛矿表面形成了阳离子端基化. 这一现象也与先前的研究结果相符合, 即全无机钙钛矿中Cs+阳离子极其稳定, 不易发生离子交换. 图 1 未处理、EAI、PAI和BAI处理后的CsPbI2Br薄膜 (a) 紫外可见吸收光谱(新制); (b) XRD图谱; (c) 紫外可见吸收光谱(35% RH, 48 h); (d) XRD图谱(35% RH, 48 h) Figure1. (a) UV-vis spectra and (b) XRD patterns of CsPbI2Br films under EtOAc, EAI, PAI, BAI treatments, respectively. After placed in 35% RH for 48 h, (c) UV-vis spectra and (d) XRD patterns of CsPbI2Br films under EtOAc, EAI, PAI, BAI treatments, respectively.
为了探究不同铵盐对钙钛矿薄膜湿稳定性的影响, 我们将不同铵盐处理过的全无机钙钛矿薄膜置于温度为25 ℃、相对湿度(relative humidity, RH)为35%的环境48 h. 通过图1(c)紫外可见吸收光谱发现, 未处理、EAI和PAI处理后的CsPbI2Br薄膜均在450 nm左右出现δ相吸收, 表明薄膜已经发生相变[25]. 而BAI处理的CsPbI2Br薄膜吸收与新制CsPbI2Br薄膜相比无明显变化. 图1(d) XRD图谱中显示除BAI处理外, 其余各组均在10°出现δ相衍射峰, 与紫外可见吸收光谱结果一致[27]. 实验结果表明, 与EAI, PAI相比, BAI处理能够提高全无机钙钛矿薄膜的湿稳定性. 基于以上讨论, 进一步探究BAI的浓度对处理后的CsPbI2Br全无机钙钛矿湿稳定性的影响. 因此, 设置BAI乙酸乙酯溶液的浓度分别为0, 2, 4, 8 mg/mL, 进行对比实验, 结果如图2所示. 图2(a)表明不同浓度BAI处理后的CsPbI2Br薄膜的吸收曲线相似, 证明BAI处理浓度对CsPbI2Br的带隙无影响. 图2(b)显示当薄膜在35% RH空气环境下放置48 h后, 未处理的CsPbI2Br薄膜在450 nm处出现明显的δ相吸收边, 经过BAI处理的CsPbI2Br薄膜均无明显变化. 图2 (c)和图2(d)显示2 mg/mL和4 mg/mL BAI处理的钙钛矿薄膜在分别暴露56 h和64 h后, 在450 nm处出现明显的δ相吸收, 而8 mg/mL BAI的钙钛矿薄膜则未出现明显的δ相特征. 这表明随着BAI处理浓度的提高, 钙钛矿表面有机阳离子层增厚使得CsPbI2Br钙钛矿薄膜的湿稳定性逐渐增强. 图3(b)—(d)的XRD图谱表明, 无BAI处理的钙钛矿薄膜在48 h时出现δ相特征峰(10°), 而4 mg/mL和8 mg/mL BAI处理分别在56 h和64 h出现, XRD结果与紫外可见吸收光谱图结果一致. 上述实验结果证明有机铵盐BAI处理CsPbI2Br钙钛矿时, 钙钛矿表层有机阳离子端基化的量能够显著影响其湿稳定性[29]. 但是在稳定性实验中, BA表面端基化的CsPbI2Br在降解过程中δ相特征峰强度比未经BAI处理的CsPbI2Br降解后的δ相峰更强, 表明这些端基化的BA对于CsPbI2Br钙钛矿的降解过程有显著影响. 图 2 在35% RH空气环境下, 不同浓度BAI处理后CsPbI2Br薄膜在不同暴露时间时的紫外可见吸收光谱 (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h Figure2. UV-visible absorption spectra of CsPbI2Br films under different BAI treatments exposed to 35% RH environment in air after various exposure time: (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h.
图 3 在35% RH空气环境下, 不同浓度BAI处理后CsPbI2Br薄膜在不同暴露时间时的XRD图谱 (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h Figure3. XRD patterns of CsPbI2Br films under different BAI treatments exposed to 35% RH environment in air after various exposure time: (a) 0 h; (b) 48 h; (c) 56 h; (d) 64 h.
使用SEM观察不同浓度表面处理后CsPbI2Br薄膜的形貌特征. 如图4(a)和图4(b)所示, CsPbI2Br薄膜致密没有明显孔洞, 但是钙钛矿晶粒大小不均匀, 平均尺寸约为50 nm, 呈紧密堆积. 不同浓度的BAI 处理后, CsPbI2Br钙钛矿晶粒大小没有明显增加, 但是颗粒大小变得更加均匀, 特别是晶界不再明显. 这显示BAI的处理引发了晶体的再生长, 但是晶粒的进一步增长和BAI的浓度没有显著相关. 并且BAI处理后的CsPbI2Br薄膜的电子显微镜图像出现由于导电性变差引起的变白, 从图4(c)和图4(d)可以看出, 随着BAI浓度增加到4 mg/mL和8 mg/mL, 钙钛矿晶粒大小并没有进一步增加和明显变化. BAI浓度越高表面泛白现象越严重, 这显示有机阳离子的表面端基化的增加显著改变了钙钛矿表面的电学性质. 图 4 不同浓度BAI处理后CsPbI2Br 薄膜的SEM图谱 (a) 0 mg/mL; (b) 2 mg/mL; (c) 4 mg/mL; (d) 8 mg/mL Figure4. SEM images of CsPbI2Br films under the various BAI (EtOAc) treatments: (a) 0 mg/mL; (b) 2 mg/mL; (c) 4 mg/mL; (d) 8 mg/mL
表1不同浓度BAI处理后CsPbI2Br钙钛矿太阳能电池的光伏参数(取32个样品均值) Table1.Photovoltaic parameters of CsPbI2Br perovskite solar cells under different BAI treatments (average of 32 devices)
图 5 不同浓度BAI处理CsPbI2Br钙钛矿太阳能电池伏安特性曲线 Figure5. Voltage-current characteristics of CsPbI2Br perovskite solar cells under different BAI treatments.