1.School of Science, Zhejiang A&F University, Hangzhou 311300, China 2.Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. U1832150) and the National College Students Innovation and Entrepreneurship Training Program of China (Grant No. 110-2013200055).
Received Date:05 May 2019
Accepted Date:26 May 2019
Available Online:01 August 2019
Published Online:05 August 2019
Abstract:Monolayer of graphene oxide has great potential applications in ion and molecular screening, desalination and purification of water, gas separation, biosensing, proton conductors, lithium batteries, super capacitors and other fields, due to its excellent physical and chemical properties. However, the graphene oxide prepared by chemical and physical methods, such as the commonly used Hummers method is a metastable material. The transformation and regulation of the physical and chemical properties of the final morphology are essential, and systematic research is urgently needed. In this paper, the thermostat treatment method is used to control the metastable transformation of graphene oxide. The relationship of content, type, and morphology with temperature of oxygen-containing graphene oxide are detected by X-ray photoelectron absorption spectroscopy, Fourier infrared absorption spectroscopy, scanning electron microscope, etc.; and the effects of temperature on the stability of solution suspension stability, photon energy band and tensile strength of graphene oxide in the transformation process are analyzed by using Zeta potential, ultraviolet absorption spectrum, tensile force. The quantitative test results show that there exists a phenomenon in which the epoxy phase decreases, the hydroxyl group increases and the overall oxygen content decreases in the metastable transition process of graphene oxide, and the monolayer morphology of graphene oxide does not change significantly in this process. This structural transformation, however, greatly enhances the viscosity and hydrophilicity of the suspension, and remarkably reduces the energy band and considerably raises the tensile strength enhancement effect. When the transformation process is long enough, the hydrophilicity of the graphene oxide will decrease and precipitate. It is indicated that a further dehydration transition occurs between the hydroxyl groups. In addition, in the paper we also analyze the effect of constant temperature treatment time and concentration of suspension on this transformation process. The relevant research results are helpful in understanding the performance change of metastable graphene oxide suspension with temperature, and have certain reference value for the specific application of graphene oxide. Keywords:graphene oxide/ metastable/ group transformation
全文HTML
--> --> --> -->
3.1.恒定温度热处理对氧化石墨烯的含氧基团的影响
为了对比温度对氧化石墨烯含氧基团的影响, 将用离心管内封装的氧化石墨烯悬浮液分别放置在25 ℃ (室温), 50 ℃, 70 ℃和90 ℃四种温度条件下热处理3 d, 结果如图1(a)所示. 按温度从低到高顺序, 悬浮液颜色由室温保存的棕黄色向深黑色转变; 宏观流动性显著下降, 其中50 ℃和70 ℃(更显著)均呈现黏稠状; 90 ℃出现团聚的颗粒和沉淀. 从颜色上分析, 温度处理后氧化石墨烯发生了某种变化; 从流动性的变化分析, 50 ℃和70 ℃处理后的氧化石墨烯片层之间、其和水分子之间的相互作用明显增强; 而90 ℃热处理后的团聚沉淀现象则表明发生了一定程度的还原作用. 图 1 氧化石墨烯悬浮液在不同温度热处理后的状态和基团变化 (a)不同温度处理后的溶液状态; (b) XPS检测的C, O元素的原子数含量百分比; (c) C 1s精细谱及分峰拟合; (d)各基团的原子数含量百分比 Figure1. State and changing of group of the graphene oxide suspension after heat treatment at different temperatures: (a) Solution state after different temperature treatment; (b) percentage of atomic content of C and O elements detected by XPS; (c) C 1s XPS spectra and peak fitting; (d) percentage of atomic content of each group.
用XPS检测了恒温处理后的氧化石墨烯的元素及基团的含量, 如图1(b)所示. XPS全谱扫描结果表明, 样品内除了C和O元素外并没有明显的其他元素信号. 25 ℃ (室温), 50 ℃, 70 ℃和90 ℃四种温度对应的O元素的含量分别为32.7%, 30.7%, 29.8% 和28%, 表明含氧量与处理温度呈现负相关关系. 对氧化石墨烯的C元素的C 1s的高分辨XPS能谱扫描结果如图1(c)所示, 其中284.7, 286.8, 287.3和289.4 eV四个能量峰分别对应C—C/C=C, C—OH, C—O—C和O—C=O基团的能量吸收特征峰[16,17], 对其进行分峰拟合可以得到各基团的相对含量. 从图1(d)可知, 四种温度处理后的羟基含量分别为27.9%, 32.0%, 34.6% 和24%, 而环氧的含量分别为12.5%, 9.7%, 2.0%和12.7%. 对比室温条件下, 50 ℃和70 ℃的羟基—OH明显增加、环氧C—O—C显著减少; 尤其是70 ℃条件羟基—OH增加了6.5%, 环氧C—O—C减少了10.5%, 表明在该温度时, C—O—C开环转变成了—OH, 整体上含氧量略微减小. 由于—OH之间、以及—OH和水分子间的氢键作用, 远大于C—O—C和水分子间的作用[18], 使得悬浮液变得黏稠, 预示着更佳的悬浮稳定性. 而在90 ℃条件时, —OH明显减少, C—O—C基本不变, 说明片层和水分子之间的氢键作用变弱, 结果导致悬浮稳定性变差, 并出现颗粒团聚和沉淀现象. 结果显然表明, 90 ℃热处理属于含氧基团的热还原反应, 因此在本文中不再深究. 为观察氧化石墨烯单片层的形貌是否改变, 在不同温度热处理后, 立即对样品进行了SEM制样. 所有样品的SEM制样流程和条件一致. 在干燥无尘环境下, 将氧化石墨烯悬浮液滴涂于洁净硅基底表面, 样品在红外灯下充分烘干后, 进行喷金处理, 即进行SEM测定. 如图2(a)所示, SEM形貌检测表明, 25 ℃(室温), 50 ℃和70 ℃恒温处理的氧化石墨烯单片层在10 μm的尺度上形貌没有明显差异, 说明温度对单片层形貌的影响较小. 热处理后, 氧化石墨烯的悬浮稳定性、机械强度等性能明显提升. 而XPS和红外的含氧基团含量和种类的变化表明, 氧化石墨烯热处理的影响以及性能的提升主要来自于基团的转变, 而不是片层的形貌. 图 2 不同温度热处理后的形貌、红外光谱以及悬浮稳定性表征 (a) SEM图像, 三种温度处理后的氧化石墨烯单片层形貌; (b)多个平行样的红外吸收光谱; (c)三种温度处理后的氧化石墨烯悬浮液的Zeta电位 Figure2. Morphology, FT-IR spectra and suspension stability characterization after heat treatment at different temperatures: (a) SEM images, namely, the morphology of monolayer of graphene oxide after three temperature treatments; (b) FT-IR spectra of multiple parallel samples; (c) Zeta potential basic of graphene oxide after three temperature treatments.