1.Shandong Experimental High School, Jinan 250001, China 2.School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China 3.Taishan College, Shandong University, Jinan 250100, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 51872166) and the Fundamental Research Fund for Shandong University, China (Grant Nos. 2016JC036, 2017JC032).
Received Date:19 February 2019
Accepted Date:17 April 2019
Available Online:06 June 2019
Published Online:20 July 2019
Abstract:Piezoelectric materials have been extensively employed in numerous devices. With the rapid development of modern information technology, the high temperature piezoelectric materials that can work in extreme environments are in great demand. Therefore, it is urgent to investigate piezoelectric materials with high Curie temperature and strong piezoelectric performance. This paper reports the significantly improved piezoelectric properties of high temperature bismuth titanate-tantalate (Bi3TiTaO9, BTT) polycrystalline ceramics. In this work, the rare-earth cerium ions modified Bi3TiTaO9 piezoelectric ceramics are prepared by the conventional ceramic technique. The introduction of Ce ions significantly enhances the piezoelectric performance of BTT ceramics. The BTT-6Ce (BTT+0.6 wt.% CeO2) exhibits optimized piezoelectric properties with a piezoelectric coefficient d33 of 16.2 pC/N, which is four times the value of unmodified BTT (d33~4.2 pC/N). The dielectric and ferroelectric measurements indicate that Ce ions remarkably reduce the dielectric loss tanδ and increase polarizations, which are beneficial to the piezoelectric properties. The BTT and BTT-6Ce (x = 0.6) ceramics each have a high Curie temperature TC: ~890 ℃ and 879 ℃, respectively. The coercive field Ec of BTT and BTT-6Ce ceramics are 53.8 kV/cm and 57.5 kV/cm, respectively, while the remnant polarizations Pr of BTT and BTT-6Ce ceramics are 3.4 μC/cm2 and 5.4 μC/cm2, respectively, at a frequency of 1 Hz, temperature of 180 ℃, and drive field of 110 kV/cm. The thermal annealing measurements indicate that the BTT ceramics still possess stable piezoelectric properties after being annealed at 800 ℃. The results exhibit that the cerium-modified BTT ceramics are good materials for high temperature applications. Keywords:bismuth layer-structured ferroelectrics/ Bi3TiTaO9/ piezoelectric ceramics/ high Curie temperature
全文HTML
--> --> -->
3.结果与讨论图2为Bi3TiTaO9陶瓷的室温粉末XRD图谱, 从图中可以看出稀土Ce离子掺杂的BTT陶瓷样品均为单一的m = 2的铋层状结构. 如图1所示, Bi3TiTaO9是由含铋的(Bi2O2)2+层和含2个ABO3结构的类钙钛矿层沿Bi3TiTaO9的c轴方向有规律地相互交替排列而成. 十二配位的XIIBi3+的离子半径为134 pm[22], 除了位于(Bi2O2)2+层中的Bi外, Bi离子还位于类钙钛矿层中的A位, 如图1所示; 六配位的VITi4+和VITa5+的离子半径分别为60.5 pm和64 pm[23], 位于类钙钛矿层中的B位. 十二配位的XIICe3+的离子半径为134 pm[23], 大于VITi4+和VITa5+的离子半径, 与XIIBi3+的离子半径一致. 稀土Ce离子进入B位VITi4+和VITa5+的位置需要更大的能量, 而(Bi2O2)2+层中难以进入其他离子, Bi离子在烧结过程中易挥发, 因此稀土Ce离子应当进入类钙钛矿层中的A位, 填补(取代)由于Bi挥发造成的Bi缺位. 从XRD图谱还可以看出相对强度最大的衍射峰为(115)衍射峰, 这与铋层状结构氧化物的X射线衍射最强峰为(112m+1)的规律相符合[24]. 通过阿基米德法, 我们得到了样品的密度, 纯的BTT陶瓷的密度为8.713 g·cm–3, 约为理论密度(9.003 g·cm–3)的97%; 稀土Ce离子掺杂的Bi3TiTaO9陶瓷的相对密度也在理论密度的93%以上, 显示了BTT陶瓷材料具有较高的致密度. 图 2 Bi3TiTaO9压电陶瓷的粉末XRD图谱 (a) x = 0; (b) x = 0.4; (c) x = 0.8 Figure2. Powder X-ray diffraction of Bi3TiTaO9 ceramics: (a) x = 0; (b) x = 0.4; (c) x = 0.8
图7(a)和图7(b)分别为纯的BTT和BTT-6Ce (x = 0.6)陶瓷在电场为90 kV/cm, 频率为1 Hz时的室温电滞回线(P-E)图以及电流(I-E)图. 在90 kV/cm的电场驱动下, P-E回线几乎为线性, 而且没有极化电流出现; 当驱动电场超过100 kV/cm时, 样品容易被击穿. 图7I-E图显示, BTT和BTT-6Ce (x = 0.6)陶瓷在90 kV/cm的电场驱动下未出现极化反转电流, 这说明BTT和BTT-6Ce (x = 0.6)陶瓷的室温矫顽场Ec可能高于驱动电场, 导致样品直至击穿也未得到饱和的电滞回线. 同时这种现象与BTT压电陶瓷在室温极化时, 即使样品被击穿也无法得到理想的压电性能是一致的. 因此, 在180 ℃ (样品的极化温度)对BTT压电陶瓷进行了测试. 电滞回线测试结果显示样品在180 ℃可以承受更高的电场. 图8(a)和图8(b)分别为纯的BTT和BTT-6Ce (x = 0.6)陶瓷在电场为110 kV/cm, 频率为1 Hz, 温度为180 ℃时的P-E图以及I-E图. 纯的BTT压电陶瓷的矫顽场Ec = 53.8 kV/cm, 剩余极化强度Pr = 3.4 μC/cm2, 最大极化强度Pmax = 5.8 μC/cm2. 图中也给出了BTT压电陶瓷电流强度I随驱动电场E的变化曲线图谱, 对应于在矫顽场Ec处, 电流I具有最大峰值(或最小值, 对应–Ec), 说明此处由于电畴的反转导致了电荷的快速传输, 极化电流峰越尖锐, 电滞回线显示也就越饱和. BTT-6Ce (x = 0.6)陶瓷的矫顽场Ec = 57.5 kV/cm, 剩余极化强度Pr = 5.4 μC/cm2, 最大极化强度Pmax = 8.0 μC/cm2. 与纯的BTT陶瓷相比较, BTT-6Ce (x = 0.6)陶瓷的剩余极化强度Pr和最大极化强度Pmax显著提高. 高的极化强度往往伴随着强的压电性能[27], 因此, BTT-6Ce (x = 0.6)陶瓷具有强的压电性能与其具有高的极化强度是一致的. 图 7 (a) BTT和(b) BTT-6Ce (x = 0.6)陶瓷的室温P-E和I-E图谱(频率1 Hz) Figure7. The polarization-electric field hysteresis (P-E) loops and current-electric field (I-E) curves of BTT (a), and BTT-6Ce (x = 0.6) (b) ceramics measured at room temperature and at a frequency of 1 Hz
图 8 (a) BTT和 (b) BTT-6Ce (x = 0.6) 陶瓷的P-E和I-E图谱 (180 ℃, 频率1 Hz) Figure8. The polarization-electric field hysteresis (P-E) loops and current-electric field (I-E) curves of BTT (a) and BTT-6Ce (x = 0.6) (b) ceramics measured at 180 ℃ and at a frequency of 1 Hz
表1高居里温度(TC~900 ℃)铋层状结构氧化物压电陶瓷的电学性能参数: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT) Table1.Electrical parameters of high Curie temperature (TC~900 ℃) bismuth layer-structured oxide piezoelectric ceramics: CaBi2Nb2O9 (CBN), Bi3TiNbO9 (BTN), Bi3TiTaO9 (BTT)
图9为BTT和稀土Ce离子掺杂的BTT陶瓷的压电系数d33值随退火温度的变化趋势图. 压电系数d33值是在退火温度下保温2 h后在室温测得. 从图中可以看出, 即使经800 ℃的退火处理, BTT和BTT-Ce陶瓷的压电系数d33值仍没有明显的下降, 这显示了800 ℃的高温退火对铋层状结构BTT陶瓷的压电性能影响较小. 当退火温度接近900 ℃, 压电系数d33值开始急速下降并趋于零. 压电系数d33值随退火温度的变化趋势图表明稀土Ce离子掺杂的BTT陶瓷不仅具有强的压电性能和高的居里温度, 而且经800 ℃的高温退火, 仍然具有较好的压电性能温度稳定性. 铋层状结构钽酸盐钛钽酸铋(Bi3TiTaO9)是一类可以在居里温度和压电性能方面与铋层状结构铌酸盐媲美的压电陶瓷. 图 9 退火温度对BTT陶瓷压电系数d33的影响 Figure9. The piezoelectric coefficient d33 of the BTT and BTT-Ce ceramics as a function of annealing temperature