1.Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China 2.Northwest Institute of Nuclear Technology, Xi’an 710024, China
Fund Project:Project supported by the National Natural Science Foundation of China (Grant Nos. 51402141, 11674143, 11405133).
Received Date:23 January 2019
Accepted Date:02 April 2019
Available Online:01 June 2019
Published Online:20 June 2019
Abstract:In order to study the effect of ion implantation on the in-plane magnetic anisotropy of epitaxial magnetic films, a 3-nm Al buffer layer is epitaxially grown on an Si (111) substrate with a miscut angle, and then 25-nm Fe is grown on the buffer layer. High-resolution X-ray diffraction reveals that the epitaxial Fe film has a (111)-oriented bcc structure. The epitaxial Fe films are implanted by 10 keV N+ ions with dose up to 5 × 1016 ions/cm2. The change and mechanism of the in-plane magnetic anisotropy of the epitaxial Fe film are studied systematically. It is found that the in-plane magnetic anisotropy of the epitaxial Fe film is gradually changed from two-fold to six-fold symmetry with the increase of N+ implantation dose. It is confirmed by transmission electron microscopy and etching experiments that ion implantation changes the surface and interface state of Fe film. This result is consistent with the result from the SRIM software simulation. The in-plane magnetic uniaxial anisotropy of epitaxial Fe film comes from atomic steps at the surface and the interface of the Fe film. These steps result from Si (111) substrate with a miscut angle. Ion implantation has effects on sputtering and atomic diffusion. The sputtering effect causes the step at the surface of the Fe film to be erased, and the diffusion of the atom leads the step at the interface of the Fe film to disappear. The in-plane uniaxial anisotropy induced by the atomic step is weakened, and the magnetocrystalline anisotropy induced by the Fe (111) plane is dominant. Therefore, the epitaxial Fe film exhibits Fe (111) plane induced six-fold magnetic symmetry after high-dose N+ implantation. This work indicates that the in-plane magnetic anisotropy of Fe films epitaxially grown on Si (111) substrate with miscut angle can be modified and precisely controlled by ion implantation. This work may be of practical significance for improving the density of in-plane magnetic recording material. Keywords:epitaxial Fe films/ ion implantation/ magnetic anisotropy
图 3 室温下不同剂量离子注入的外延Fe膜的归一化面内剩磁曲线 Figure3. Normalized in-plane remanence curves for the epitaxial Fe films with different doses of ion implantation at room temperature.
为了理解外延Fe膜面内磁各向异性的转变机理, 需要讨论离子注入对外延Fe膜的辐照效应. 首先, 高能离子在晶体内的位移可能导致Fe膜和缓冲层相互扩散, 从而可能导致Fe膜与缓冲层的界面处的原子台阶消失, 界面处台阶诱导的面内单轴各向异性减弱. 为了证实离子注入对外延Fe膜界面的影响, 对未注入样品和高剂量注入后样品的切面进行高分辨TEM观察(图4). 可以发现未注入的样品(图4(a)) Si与Al层, Al与Fe层界面清晰, Fe膜厚度约为25 nm, Al缓冲层厚度约为3 nm. 当注入剂量为5 × 1015 ions/cm2时(图4(b)), 可以看到Fe向Al缓冲层明显扩散, 而且有向Si层扩散的趋势. 最大剂量(5 × 1016 ions/cm2)注入后(图4(c)), Al缓冲层和Fe层之间的界面已经完全不能区分, 扩散层厚度增加到7.3 nm, Fe膜厚度明显减少, 剩余约20 nm. 高分辨TEM照片证实了Fe膜与缓冲层间的界面由于离子注入而逐渐消失, 说明Fe膜在界面外的原子台阶因为离子注入被消除, 界面台阶诱导形成的单轴磁各向异性消失. 图 4 不同剂量离子注入样品的切面高分辨TEM (a) 未注入样品; (b) 辐照剂量为5 × 1015 ions/cm2; (c) 辐照剂量为5 × 1016 ions/cm2 Figure4. Cross-sectional TEM images for the as-deposited and implanted samples with a series of different N+ dose: (a) The as-deposited samples; (b) the irradiated samples dose of 5 × 1015 ions/cm2; (c) the irradiated samples dose of 5 × 1016 ions/cm2.
另外, 由于外延薄膜表面处原子台阶也对面内单轴各向异性有贡献, 所以需要探讨离子注入对外延薄膜表面的影响. 离子注入过程中离子束对铁磁薄膜表面有溅射作用. 通过用SRIM-2008 full-cascade模式模拟, 取Fe的表面结合能为4.34 eV, 可以得到平均溅射效率为1.53 atom/ion, 则在最大剂量时(5 × 1016 ions/cm2), 溅射厚度为8.5 nm. 除了模拟计算, 从图4所示的TEM照片也可以明显看出, Fe膜厚度明显减少, 在最大剂量(5 × 1016 ions/cm2)注入后, 剩余约20 nm (与SRIM模拟的规律符合). 这个结果说明在离子辐照后, 外延Fe膜表面的原子台阶消失, 由其诱导形成的磁单轴各向异性消失. 为了进一步说明离子注入的溅射作用对外延Fe膜面内磁各向异性的影响, 对未注入外延Fe膜进行了离子刻蚀实验. 刻蚀实验采用北京埃德万斯LKJ-1D-150离子束刻蚀系统用400 eV的Ar+离子入射角度呈50°刻蚀7 s, 理论上溅射厚度为2 nm[28]. 通过用SRIM软件计算, 400 eV Ar+的射程是0.7 nm (歧离0.7 nm), 刻蚀参数的设置保证了刻蚀后Fe膜表面能够被破坏, 而Al缓冲层和Fe层之间的界面不受影响. 从图5所示的剩磁极图可以看出, 刻蚀后的样品并没有出现6重磁对称. 对比未注入样品, 剩磁曲线(图6)表现为两个展宽了的峰, 这与注入剂量为5 ×1014 ions/cm2时剩磁曲线的趋势相似(峰展宽, 磁对称性向4重对称发展). 这个结果验证了离子注入过程中, 外延Fe膜表面被溅射, 表面处的原子台阶消失, 其诱导形成的单轴各向异性也被擦除. 图 5 室温下未注入Fe膜和刻蚀后的Fe膜的归一化面内剩磁极图 Figure5. Azimuthal dependence of the normalized in-plane remanence for the as-deposited and ion beam etched samples at room temperature.
图 6 室温下未注入Fe膜和刻蚀后的Fe膜的归一化剩磁曲线 Figure6. Normalized in-plane remanence curves for the as-deposited and ion beam etched samples at room temperature.