1.Nanoscale Physics and Devices Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2.University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0301700, 2015CB932400) and the National Natural Science Foundation of China (Grant Nos. 11574356, 11434010).
Received Date:06 March 2019
Accepted Date:28 March 2019
Available Online:01 June 2019
Published Online:05 June 2019
Abstract:InAs/GaAs quantum dot (QD) is one of the promising material systems for the quantum information processing due to their atomic-like optical and electrical properties. There are many previous researches reporting the InAs QDs which can be implemented as solid-state single-photon sources for quantum information and quantum computing. However, the site-controlled growth of QDs is the prerequisite for addressability and integration. There are very few researches focusing on the systematic study of preferential nucleation of InAs QDs on a patterned GaAs (001) substrate. In this work, we study the preferential nucleation sites of InAs QDs on a patterned GaAs (001) substrate with different trench sidewall inclinations. With small inclination angle of the trench sidewalls, the InAs QDs nucleate preferentially inside the trenches, while with large inclination angle, the edges of the trenches appear to be the preferential nucleation sites. By utilizing the established method, a pair of InAs dots can be uniformly achieved in the patterned pits through tuning the inclination angle of the pits. The site-controlled single InAs QD and InAs QD molecules on the patterned substrates could have potential applications in quantum information processing and quantum computing. Keywords:InAs quantum dots/ patterned substrate/ nucleation site/ site-controlled growth
全文HTML
--> --> --> -->
2.1.衬底制备、清洁和脱氧过程
实验中使用的衬底是由wafe-tech公司提供的n型掺杂直径为3 in (1 in = 2.54 cm) 的GaAs (001)晶圆片. 图形衬底制备过程分为涂胶、前烘、曝光、显影、刻蚀五大步骤. 选用分子量为495的聚甲基丙烯酸甲酯 (poly methyl methacrylate,PMMA)作为抗蚀剂, 旋涂条件为4000 r/min, 旋涂厚度大约为90 nm, 前烘温度180 ℃, 烘烤时间为1 min. 然后快速将涂有光刻胶的平衬底进行曝光, 曝光过程使用Raith 150型号的电子束光刻(electron beam lithography, EBL)设备完成, 为提高精细结构在光刻过程中的精确度, 具体曝光参数为: 电子束加速电压20 kV, 透镜光阑孔径10 μm, 曝光剂量100 mJ/cm2, EBL写场大小为100 μm × 100 μm. 显影定影过程为标准的PMMA光刻胶的显影定影工艺. 图形的转移是利用硫酸、双氧水和水的混合溶液(H2SO4 ∶ H2O2 ∶ H2O体积比为3∶1∶640, 其中浓硫酸质量分数为98%, 双氧水质量分数为30%)对样品进行刻蚀. 通过调控硫酸、双氧水与水的比例及刻蚀时间, 可以实现纳米沟槽的侧壁倾斜角α1从5°到50°以及纳米沟槽深度10—60 nm的变化, 其中α1的定义如图1(d)中所示, 即侧壁的延长线与衬底水平面的夹角, α1越大, 纳米沟槽侧壁越陡, α1越小, 侧壁越平缓. 图 1 GaAs (001)衬底与沿$\left[ {1\bar 10} \right]$方向的纳米沟槽脱氧前后的形貌变化 (a)脱氧后平衬底区域的AFM图; (b), (c) α1 ≈ 16°时图形结构区域脱氧前后的AFM图; (d)沟槽脱氧前后AFM线扫描图 Figure1. Morphological change of patterned GaAs (001) substrate before and after deoxidation: (a) AFM image of flat GaAs after deoxidation; AFM image of patterned GaAs before (b) and after deoxidation (c), the trenches are orientated along $\left[ {1\bar 10} \right]$ direction and the sidewall inclination angle α1 is about 16°; (d) AFM line-scans of the trenches before (black line) and after deoxidation (red line).